Preparation of Photocatalytic Porous Nano-ZnO from Galvanizing Dross

2019 ◽  
Vol 298 ◽  
pp. 186-194
Author(s):  
Peng Hui Wu ◽  
Jun Lin Xie ◽  
Jia Ming Yang ◽  
Wen Hao Yang ◽  
Chi Mao ◽  
...  

By using an acid free wet chemical method, porous nano-ZnO with high photocatalytic performance was synthesized from galvanizing dross at room temperature. The route is an environmental way to realize high value conversion and reuse of galvanizing dross. X-ray diffraction, microstructure, electron diffraction and specific surface area analyses show, the prepared porous nano-ZnOs are hexagonal wurtzite structure ZnO strips. The strips are consist of ZnO nanoparticles, the strips growth direction is perpendicularly to the C axis when the calcination temperature is up to 350°C. With the increase of calcination temperature, the specific surface area of ZnO decreases and the crystallinity increases. The photocatalytic activity of nano-ZnO is related to its crystallinity and grain size. When the calcination temperature is 400°C and the calcination time is 2h, the nano-ZnO has been completely crystallized, the ZnO particle size is uniform and is about 20 nm, the photocatalytic activity is the best and can reach up to 95%.

2020 ◽  
Vol 998 ◽  
pp. 78-83
Author(s):  
Yi Yi Zaw ◽  
Du Ang Dao Channei ◽  
Thotsaphon Threrujirapapong ◽  
Wilawan Khanitchaidecha ◽  
Auppatham Nakaruk

Titanium dioxide (TiO2) is known as one of the widely used catalysts in photocatalysis process. Recently, the photocatalysis of TiO2 has been implied in water purification and treatment, particularly dyes and organic compounds degradations. Naturally, the TiO2 can be found in three phases including anatase, rutile and brookite; each phase has its own specific properties such as grain size, stability and band gap energy. In this work, the effect of calcination temperature on the structure, morphology and photocatalytic activity were investigated. The data suggested that the anatase/rutile ratio of TiO2 can be controlled through the calcination process. The phase transformation data strongly indicated the liner function between percentage of rutile phase and calcination temperature. The BET analysis provided the consistent data with XRD patterns by showing that the specific surface area was decreased by increasing calcination temperature. The photodegradation of methylene blue under UV irradiation proved that the mixed phase of anatase/rutile ratio at 78.5/21.5 provided the highest photocatalytic activity. The phase composition ratio can influence the nanoparticles properties including band gap, specific surface area and energy band structure. Therefore, the control of anatase/rutile ratio was an alternative to enhance the photocatalytic activity of TiO2 nanoparticles for dyes and organic compounds degradations.


2010 ◽  
Vol 129-131 ◽  
pp. 784-788 ◽  
Author(s):  
Min Wang ◽  
Qiong Liu ◽  
Dong Zhang

BiVO4/FeVO4 composite photocatalyst samples were prepared by calcining the mixture of FeVO4 and BiVO4 precusor which were prepared through liquid phase precipitation method for further increasing the photocatalytic efficiency of FeVO4. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microsoope(SEM)and specific surface area (BET). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange (MO) solution under visible light. The XRD patterns indicate that BiVO4/FeVO4 composite photocatalysts consist of triclinic phase and the lattice was not distorted beacause of doping Bi. But the morphology change greatly and the specific surface area has little change. In the experimental conditions used, the optimal photocatalytic activity for all the prepared samples was reached when BiVO4 doping was 22 at%. The degradation rate of MO was increased by 20% or so than that of pure FeVO4.


2010 ◽  
Vol 4 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Titanate structures were synthesized in highly alkaline solution using hydrothermal procedure. As-prepared powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). A specific surface area of the powders was measured by BET method. Results confirmed formation of layered trititanates, already after one hour of hydrothermal synthesis. To examine the photocatalytic activity of the as-prepared layered titanates, methylene blue (MB) was employed as a target compound in response to visible light at ambient temperature. It was observed that the specific surface area, size distribution and crystallinity are important factors to get high photocatalytic activity for the decomposition of MB. .


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Yaping Guo ◽  
Shaogui Yang ◽  
Xuefei Zhou ◽  
Chunmian Lin ◽  
Yajun Wang ◽  
...  

Silica-modified titania (SMT) powders with different atomic ratios of silica to titanium (Rx) were successfully synthesized by a simple ultrasonic irradiation technique. The prepared samples were characterized by X-ray diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible spectroscopy. The specific surface area was measured according to BET theory. Results indicate that the addition of silica to titania can suppress the crystalline size growth and the transformation of anatase phase to rutile phase of titania, enlarge specific surface area of the titania particles, and result in a blue shift of absorption edge compared to pure titania. The photocatalytic activity of the SMT samples was evaluated by decolorizing methyl orange aqueous solutions under UV-visible light irradiation. It was found in our study that this activity was affected by silica content, calcination temperature, H2SO4, and oxidants such as KIO4, (NH4)2S2O8and H2O2. The results reveal that the photocatalytic activity of 0.1-SMT catalyst is the best among all samples calcined at550°C for 1 h and it is 1.56 times higher than that of Degussa P-25 titania, which is a widely used commercial TiO2made by Germany Degussa company and has been most widely used in industry as photocatalyst, antiultraviolet product, and thermal stabilizer. The optimal calcination temperature for preparation was550°C. The photocatalytic activity of SMT samples is significantly enhanced by H2SO4solution treatment and oxidants.


2006 ◽  
Vol 61 (10) ◽  
pp. 1311-1318 ◽  
Author(s):  
Noureddine Kamil ◽  
Mohamed Khalid El Amrani ◽  
Najiba Benjelloun

Silica gel supported titanium dioxide photocatalysts were prepared by sintering TiO2/SiO2 mixtures under variations of TiO2 content, calcination temperature and calcination time. The method allowed to obtain catalyst samples, which can be used in aqueous suspension and which were found to be easily separated by decantation after the photocatalytic treatment. The photocatalytic efficiency of the catalysts was tested by carrying out the photooxidation of the textile dye Acid Red 88 (AR88) in aqueous solution, used as “model” water pollutant. The obtained photoefficiency results were correlated to catalyst physicochemical characteristics, as determined by Inductively Coupled Plasma (ICP) analysis, X-ray diffraction, specific surface area (BET) and scanning electron microscopy (SEM). No positive correlation has been observed between titanium dioxide content and photocatalytic efficiency. The decrease of photocatalytic activity at high calcination temperature (1000 °C) is attributed to the phase transition anatase/rutile as well as to the decreasing specific surface area. According to SEM analysis, no significant fixation of TiO2 on silica is observed for catalysts prepared at low temperature (400 °C). The observed photocatalytic activity is consequently due to free TiO2 particles. The best efficiency is observed for photocatalyst prepared at 800 °C and containing around fifty percent titanium dioxide.


Author(s):  
Konstantin V. Ivanov ◽  
Alexandr V. Agafonov ◽  
Olyga V. Alexeeva

Recently much attention is paid to the synthesis and study of the properties of inorganic materials, based on alkaline earth titanates with a perovskite structure that have various polymorphic forms depending on the temperature. Calcium titatanat (CaTiO3) can be selected from the variety of perovskites because of its relatively high dielectric constant, unique photochemical properties, chemical stability, and compatibility with biological tissues, which leads to its application in microelectronics, photocatalysis and biomedicine as bone implants. In this paper, a solid-phase synthesis of calcium titanate was carried out by ceramic technology using mechanochemistry methods. This method allows to obtain calcium titanate directly by mechanochemical activation from the initial mixture of Ca (OH)2 and TiO2, which significantly reduces the energy consumption for its production. Structural changes in the synthesized material during calcination at 120 °C, 200 °C, 400 °C, 600 °C, and 800 °C were studied. The particle size and specific surface area of powders synthesized and calcined at 800 °C was measured by laser diffraction ("Analysette 22") and the low temperature (77K) nitrogen adsorption-desorption vapor, respectively. The phase composition of the obtained materials was studied by X-ray diffraction. It was found on the basis of studies of the particle size distribution that synthesized and calcined powders contain nanoparticles with sizes of 377 and 422 nm. The samples of CaTiO3 calcined at 120 °C and 800 °C have a mesoporous structure, the specific surface area was 46 and 7 m2/g, respectively, and average pore size in powders was 4 nm. It was found by the X-ray diffraction technique that the uncalcined sample contains admixtures of CaCO3 and TiO2 that can be removed completely at 600 °C.The photocatalytic activity of the synthesized material has been studied by the example of Rhodamine B dye decoloration on the calcium titanate calcined at 800°C. It was found that the decomposition degree of dye in solution was 77% for 80 min at a 6.7% shadow adsorption.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Tiekun Jia ◽  
Junwei Zhao ◽  
Fang Fu ◽  
Zhao Deng ◽  
Weimin Wang ◽  
...  

Zn-doped SnO2/Zn2SnO4nanocomposites were prepared via a two-step hydrothermal synthesis method. The as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-vis diffuse reflection spectroscopy, and adsorption-desorption isotherms. The results of FESEM and TEM showed that the as-prepared Zn-doped SnO2/Zn2SnO4nanocomposites are composed of numerous nanoparticles with the size ranging from 20 nm to 50 nm. The specific surface area of the as-prepared Zn-doped SnO2/Zn2SnO4nanocomposites is estimated to be 71.53 m2/g by the Brunauer-Emmett-Teller (BET) method. The photocatalytic activity was evaluated by the degradation of methylene blue (MB), and the resulting showed that Zn-doped SnO2/Zn2SnO4nanocomposites exhibited excellent photocatalytic activity due to their higher specific surface area and surface charge carrier transfer.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yosep Han ◽  
Hyung-Seok Kim ◽  
Hyunjung Kim

The degradation efficiency of methylene blue by TiO2nanoparticles, which were synthesized under different synthesis conditions (i.e., molar ratio of water and titanium tetraisopropoxide (TTIP), pH, and calcination temperature) in a sol-gel process, was systematically investigated. The results showed that increasing the molar ratio of water and TTIP led to the enhanced photocatalytic activity of TiO2nanoparticles, which were likely attributed to the increased specific surface area of TiO2nanoparticles synthesized with high molar ratio. The results were supported by the relative increase in the size of interaggregated pores of the aggregated TiO2nanoparticles. The best photocatalytic activity of TiO2nanoparticles was observed at acidic synthesis conditions; however, the results were not consistent with physical properties for the crystallinity and the crystallite size of TiO2nanoparticles but rather explained by the presence of abundant hydroxyl groups and water molecules existing on the surface of TiO2under acidic synthesis environments. Furthermore, methylene blue degradation experiments revealed that the photocatalytic activity of TiO2nanoparticles was maximized at the calcination temperature of 700°C. The trend was likely due to the combined effect of the anatase crystallinity which showed the highest value at 700°C and the crystallite size/specific surface area which did not excessively increase up to 700°C.


2001 ◽  
Vol 16 (5) ◽  
pp. 1231-1234 ◽  
Author(s):  
Pavel Shuk ◽  
Wojciech L. Suchanek ◽  
Tian Hao ◽  
Eric Gulliver ◽  
Richard E. Riman ◽  
...  

Crystalline hydroxyapatite (HAp) powders were prepared at room temperature from heterogeneous reaction between Ca(OH)2powders and (NH4)2HPO4 solutions via the mechanochemical-hydrothermal route. X-ray diffraction, infrared spectroscopy, thermogravimetric characterization, and chemical analysis were performed, and it was determined that the room temperature products were phase-pure, thermally stable HAp with a nearly stoichiometric composition. Dynamic light scattering revealed that the dispersed particle size distribution of the room temperature HAp powders was in the range of 0.15–3.0 μm with a specific surface area of ≈90 m2/g. Both specific surface area measurements and scanning electron microscopy confirmed that the HAp powders consisted of agglomerates containing hundreds of ≈20 nm HAp crystals.


Paliva ◽  
2020 ◽  
pp. 155-161
Author(s):  
Tomáš Hlinčík ◽  
Veronika Šnajdrová ◽  
Veronika Kyselová

Alumina is commonly used in industrial practice as a catalyst support and it is made from boehmite. Depending on the calcination temperature, this mineral is transformed into various crystalline modifications which have different physical and chemical properties. For this reason, the following parameters were determined at different calcination temperatures: length, width, material hardness, specific surface area and total pore volume. The results show that with increasing calcination temperature there have been significant changes which may be important when using the material as a catalyst support, e.g. in the preparation of catalysts or in the design of cat-alytic reactors. The specific surface area, which decreases in the temperature range 450–800 °C, is an important parameter for the preparation of catalysts, so it is appropriate to choose a temperature of 600 °C, when the specific surface area is above 200 m2·g-1. The effect of calcination temperature on the structural transitions of boehmite was also monitored. The results showed that γ-Al2O3 has the most suitable properties as a catalyst sup-port in the temperature range 450–800 °C.


Sign in / Sign up

Export Citation Format

Share Document