Effect of TiO2 Nanoparticle on the Structural and Electrical Properties of Nd0.67Sr0.33MnO3 /TiO2 Composites

2021 ◽  
Vol 317 ◽  
pp. 60-65
Author(s):  
Kean Pah Lim ◽  
Lik Nguong Lau ◽  
Amirah Natasha Ishak ◽  
Mohd Mustafa Awang Kechik ◽  
Soo Kien Chen ◽  
...  

In this work, (1-x) (Nd0.67Sr0.33MnO3): x (TiO2) composites with x = 0, 0.1, 0.2, 0.3 and 0.4 have been prepared to investigate the structural and electrical properties. Nd0.67Sr0.33MnO3 (NSMO) was synthesised via the solid-state reaction method before incorporated with TiO2. The addition of TiO2 nanoparticle as the secondary phase in manganite composite would favour the spin-polarized tunnelling near to the grain boundary and thus enhance the extrinsic magnetoresistance. Nevertheless, nanoparticle addition might contribute to substitution and diffusion with manganite compound as reported in literature. The effect of the TiO2 nanoparticle addition into NSMO composites has been examined by an X-ray diffractometer (XRD) and a four-point probe (4PP) system. From the thermogravimetric analysis (TGA), NSMO phase formation occurred in between 756.45 - 977.59 °C. XRD patterns showed that there is no peak shift when the TiO2 concentration increases. It can be deduced that TiO2 was segregated at the NSMO grain boundary region and its grain surface. However, a small amount of Ti atoms are expected to replace the Mn atoms in NSMO crystal system and has caused the increase in crystallite size. The electrical study showed that the presence of TiO2 nanoparticle and substitution of Ti in Mn sites have weaken the double exchange (DE) mechanism and suppressed the metal-insulator transition temperature (TMI). In addition, the insulating behaviour of TiO2 has also caused the resistivity of composites to increase drastically.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3294
Author(s):  
Jakkree Boonlakhorn ◽  
Jedsada Manyam ◽  
Pornjuk Srepusharawoot ◽  
Sriprajak Krongsuk ◽  
Prasit Thongbai

The effects of charge compensation on dielectric and electrical properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics (x = 0−0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCu3Ti4O12 was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 104 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.


2021 ◽  
Vol 317 ◽  
pp. 66-71
Author(s):  
Lik Nguong Lau ◽  
Kean Pah Lim ◽  
Amirah Natasha Ishak ◽  
Mohd Mustafa Awang Kechik ◽  
Soo Kien Chen ◽  
...  

Colossal magnetoresistive (CMR) materials have huge potential in modern application and it has been widely used in magnetic sensing industry. From the literature, an incorporation of secondary insulating phase into mixed-valence manganites could improve its extrinsic effect especially low-field magnetoresistance (LFMR). However, nanoparticle addition could lead to substitution and diffusion with its parent compound. In this work, the structural and electrical properties of La0.7Ca0.3MnO3 (LCMO) were investigated by adding the α-Fe2O3 nanoparticle with ratio of 0.00, 0.05, 0.10, 0.15 and 0.20 as the artificial grain boundaries. The LCMO compound has been synthesised using sol-gel route. The samples were chosen to sinter at 800°C to obtain the pure LCMO phase by referring to the thermogravimetric analysis (TGA). The structural properties were investigated by an X-ray diffractometer (XRD) while electrical properties were measured by a four-point probe (4PP) system. XRD patterns showed the coexistence of two phases (LCMO & α-Fe2O3). LCMO crystallised in orthorhombic structure with space group Pnma while α-Fe2O3 exhibited in hexagonal form with space group R-3c. As the content of α-Fe2O3 increases, the resistivity of the samples increases drastically. Nevertheless, the addition of iron oxide has no significant effect on the metal-insulator transition temperature (T­MI). From the XRD and 4PP analysis, it can be deduced that the α-Fe2O3 nanoparticles do not react with LCMO compound and successfully formed the La0.7Ca0.3MnO3 /α-Fe2O3 composites. The resistivity increases when the nano-sized α-Fe2O3 is added into LCMO nanocomposites due to the insulator nature of α-Fe2O3.


2021 ◽  
pp. 2150415
Author(s):  
Denghui Ji ◽  
Bin Zhang ◽  
Yong Yang ◽  
Shuling Wang ◽  
Yingdi Liu ◽  
...  

The polycrystalline samples of manganites perovskite [Formula: see text] with B-sites vacancies were synthesized using the conventional solid-state reaction method. The results based on the X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses show that the samples with [Formula: see text] have a secondary phase of lanthanum oxides. It indicates there is a maximum vacancy content at the B-sites with [Formula: see text]. By X-ray Photoelectron Spectra (XPS), the ionicities of oxygen were determined to be 0.762, 0.842, and 0.886, corresponding to [Formula: see text], 0.03, and 0.05, respectively. The B-sites vacancy plays an important role in magnetic performances: (i) B-sites vacancy changes the contents and the average cant angle of Mn cations, and makes the specific saturation magnetization at 100 K and 300 K increase, and then decrease rapidly. (ii) The Curie temperature changes in a small range from 363.93 K to 366.00 K, resulting from both the double exchange interaction increasing and the double exchange path destroyed by the vacancies. (iii) The magnetoresistance (MR) at room temperature achieves 6.97% in the [Formula: see text] sample, whose value is larger than that of [Formula: see text] sample.


2014 ◽  
Vol 975 ◽  
pp. 36-41
Author(s):  
Marcelo S. Silva ◽  
Nilson S. Ferreira

Polycrystalline samples of Ba1-xLaxTiO3 (x = 0.0, 0.002, 0.004) were prepared by a standard high-temperature solid-state reaction method. XRD studies confirmed the formation of a polycrystalline compound with a tetragonal crystal structure. SEM images suggested the presence of a polycrystalline microstructure with certain degree of porosity, and the grains appeared to be distributed inhomogeneously throughout the pallet samples. Dielectric studies indicated a ferroelectric–paraelectric phase transition with a clear shift in the Curie temperature (Tc) of BaTiO3 towards a lower temperature upon doping. The brick-layer model was used to study the potential barrier and the structure of the grain-boundary region of the Ba9.998La0.002TiO3 and Ba9.996La0.004TiO3 ceramics. These ceramics exhibited good density and a homogeneous distribution of the grains. The thickness of the grain-boundary region was calculated to be approximately 200 nm.


2014 ◽  
Vol 979 ◽  
pp. 302-306 ◽  
Author(s):  
Chalermpol Rudradawong ◽  
Aree Wichainchai ◽  
Aparporn Sakulkalavek ◽  
Yuttana Hongaromkid ◽  
Chesta Ruttanapun

In this paper, the CuFeO2compound were prepared by classical solid state reaction (CSSR) and direct powder dissolved solution (DPDS) method from starting material metal oxides and metal powders. Preparation of two methods shows that, direct powder dissolved solution faster recover phases than classical solid state reaction method. The fastest method gets from starting materials Cu and Fe metal powders, the electrical conductivity, Seebeck coefficient, carrier concentration and mobility are 10.68 S/cm, 244.59 μV/K, 12.86×1016cm-3and 494.96 cm2/V.s, respectively. In addition, each CuFeO2compounds were investigated on crystal structure and electrical properties. From XRD and SEM results, all samples have a crystal structure delafossite-typeand a large grain boundary more than 15 μm by electrical conductivity corresponds to grain boundary and lattice parameter: a increases. Within this paper, from above results exhibit that preparation CuFeO2from Cu and Fe by direct powder dissolved solution method most appropriate for thermoelectric oxide materials due to high active for preparation else high lattice strain and high power factor are 0.00052 and 0.64×10-4W/mK2, respectively.


2006 ◽  
Vol 518 ◽  
pp. 235-240 ◽  
Author(s):  
M. Žunić ◽  
Z. Branković ◽  
G. Branković ◽  
D. Poleti

The effect of Co, Cr and Nb on the electrical properties of the grain boundaries of SnO2-based varistors was investigated. The powders were prepared by the method of evaporation and decomposition of solutions and suspensions. Varistor samples were obtained by uniaxial pressing followed by sintering at 1300 °C for 1h. The electrical properties of the grain-boundary region, such as resistance (R) and capacitance (C), were determined using ac impedance spectroscopy in the 27-330 °C temperature interval. Activation energies for conduction (EA) were calculated from the Arrhenius equation. The non-linear coefficients (α) and the breakdown electric fields (Eb) of the samples were determined from the current-voltage characteristics. The potential barrier height (Φb) was calculated using the Schottky-type conducting model. After a comparison of the characteristic parameters for different varistor compositions it was found that the Cr/Nb ratio has a crucial influence on the grain-boundary properties in SnO2 varistors.


Author(s):  
M Hosneara ◽  
A Hasnat ◽  
AH Bhuyan

The effects of structural properties on the d.c. and a.c. electrical properties of different weight gain reaction bonded silicon nitride (RBSN) have been studied in this work. The degree of nitridation is assessed by the ‘weight gain’ of the ceramic, the percentage by which the weight is increased in the nitriding reaction. From X-ray diffraction (XRD) patterns, it is observed that a higher degree of nitradation sample has strong α-silicon nitride peaks. Intensity of α-silicon nitride peaks decreases with decreases weight gain. The higher degrees of nitridation, the samples have less significant Si peak. XRD patterns were recorded to calculate the lattice parameters of RBSN. The lattice parameters for three weight gain RBSN samples are found to be a =b = 7.7727 Å, c= 5.6565 Å (26% weight gain), a=b= 7.6272 Å, c= 5.6374 Å (42% weight gain) and a=b=7.6158 Å, c= 5.7732 Å (58.27% weight gain) and are in good agreement with the reported values from XRD patterns. Porosity (%) and surface morphology was observed by SEM. Keywords: Silicon nitride ceramic; electrical properties; structural properties.   DOI: http://dx.doi.org/10.3329/diujst.v7i1.9648   Daffodil International University Journal of Science and Technology Vol.7(1) 2012 50-58


Sign in / Sign up

Export Citation Format

Share Document