TYCHIUS MELILOTI STEPHENS NEW TO CANADA WITH A BRIEF REVIEW OF THE SPECIES OF TYCHIUS GERMAR INTRODUCED INTO NORTH AMERICA (COLEOPTERA: CURCULIONIDAE)

1994 ◽  
Vol 126 (6) ◽  
pp. 1363-1368 ◽  
Author(s):  
R.S. Anderson ◽  
A.T. Howden

AbstractFour species of Tychius have been introduced into North America from Europe: Tychius picirostris (Fabricius) (host plants: Trifolium spp.), widespread in North America; T. cuprifer (Panzer) (host plants: Trifolium spp., Teline monspessulana L.), known only from Maryland, USA; T. meliloti Stephens, new North American record (host plants: Melilotus spp.), known from scattered localities in Saskatchewan, Manitoba, Ontario, and Quebec, Canada; and T. stephensi Schoenherr (host plants: Trifolium spp.), widespread in North America. Keys to separate the species are presented.

2020 ◽  
Vol 49 (5) ◽  
pp. 999-1011 ◽  
Author(s):  
Lawrence Barringer ◽  
Claire M Ciafré

Abstract The spotted lanternfly Lycorma delicatula (White) is an invasive insect spreading throughout southeast Asia and eastern North America. The rapid spread of this species is facilitated by the prevalence of its preferred host, tree of heaven (Ailanthus altissima (Mill.) Swingle), as well as its use of many other host plants. While the spotted lanternfly has been previously reported to use over 65 plant species, most of these reports are from Asia and may not be applicable in North America. Additionally, many of the known hosts have not been specified as feeding hosts or as egg laying substrates. To better understand the potential impacts of this invasive insect on natural and cultivated systems in North America, we reviewed records from published and unpublished results and observations of host plant use by spotted lanternfly. We aggregated 172 host plant records worldwide and found feeding behaviors associated with 103 plant taxa across 33 families and 17 orders, 20 of which were not previously known to be associated with SLF and 15 of which were not confirmed as feeding hosts. North American records account for 56 of these taxa which include native, cultivated, and nonnative species. As a result, the spotted lanternfly has the potential to impact a wide assortment of ecosystems throughout its potential range and its North American distribution may not be limited by the presence of tree of heaven.


2009 ◽  
Vol 141 (3) ◽  
pp. 236-245 ◽  
Author(s):  
Eduard Jendek ◽  
Vasily V. Grebennikov

AbstractThe European oak borer, Agrilus sulcicollis Lacordaire, a newly detected alien species in Canada, is reported from southern Ontario. This species is illustrated and diagnosed to facilitate its recognition among other North American species of Agrilus Curtis. Data are provided on its phylogenetic affinities, host plants, native distribution, and all North American records known to date. The other eight non-native Agrilus species known in North America (A. cuprescens (Ménétriés), A. cyanescens Ratzeburg, A. derasofasciatus Lacordaire, A. hyperici (Creutzer), A. pilosovittatus Saunders, A. planipennis Fairmaire, A. sinuatus (Olivier), and A. subrobustus Saunders) are briefly discussed.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


2002 ◽  
Vol 80 (11) ◽  
pp. 1151-1159 ◽  
Author(s):  
M Dusabenyagasani ◽  
G Laflamme ◽  
R C Hamelin

We detected nucleotide polymorphisms within the genus Gremmeniella in DNA sequences of β-tubulin, glyceraldehyde phosphate dehydrogenase, and mitochondrial small subunit rRNA (mtSSU rRNA) genes. A group-I intron was present in strains originating from fir (Abies spp.) in the mtSSU rRNA locus. This intron in the mtSSU rRNA locus of strains isolated from Abies sachalinensis (Fridr. Schmidt) M.T. Mast in Asia was also found in strains isolated from Abies balsamea (L.) Mill. in North America. Phylogenetic analyses yielded trees that grouped strains by host of origin with strong branch support. Asian strains of Gremmeniella abietina (Lagerberg) Morelet var. abietina isolated from fir (A. sachalinensis) were more closely related to G. abietina var. balsamea from North America, which is found on spruce (Picea spp.) and balsam fir, and European and North American races of G. abietina var. abietina from pines (Pinus spp.) were distantly related. Likewise, North American isolates of Gremmeniella laricina (Ettinger) O. Petrini, L.E. Petrini, G. Laflamme, & G.B. Ouellette, a pathogen of larch, was more closely related to G. laricina from Europe than to G. abietina var. abietina from North America. These data suggest that host specialization might have been the leading evolutionary force shaping Gremmeniella spp., with geographic separation acting as a secondary factor.Key words: Gremmeniella, geographic separation, host specialization, mitochondrial rRNA, nuclear genes.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1278
Author(s):  
Michael Glenn O’Connor ◽  
Amjad Horani ◽  
Adam J. Shapiro

Primary Ciliary Dyskinesia (PCD) is a rare, under-recognized disease that affects respiratory ciliary function, resulting in chronic oto-sino-pulmonary disease. The PCD clinical phenotype overlaps with other common respiratory conditions and no single diagnostic test detects all forms of PCD. In 2018, PCD experts collaborated with the American Thoracic Society (ATS) to create a clinical diagnostic guideline for patients across North America, specifically considering the local resources and limitations for PCD diagnosis in the United States and Canada. Nasal nitric oxide (nNO) testing is recommended for first-line testing in patients ≥5 years old with a compatible clinical phenotype; however, all low nNO values require confirmation with genetic testing or ciliary electron micrograph (EM) analysis. Furthermore, these guidelines recognize that not all North American patients have access to nNO testing and isolated genetic testing is appropriate in cases with strong clinical PCD phenotypes. For unresolved diagnostic cases, referral to a PCD Foundation accredited center is recommended. The purpose of this narrative review is to provide insight on the North American PCD diagnostic process, to enhance the understanding of and adherence to current guidelines, and to promote collaboration with diagnostic pathways used outside of North America.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1033
Author(s):  
Lloyd C. Irland ◽  
John Hagan

Why have a special issue on North American options for reducing national CO2 footprints through forest management [...]


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 751
Author(s):  
Francesco Dovana ◽  
Paolo Gonthier ◽  
Matteo Garbelotto

Phlebiopsis gigantea (Fr.) Jülich is a well-known generalist conifer wood saprobe and a biocontrol fungus used in several world countries to prevent stump infection by tree pathogenic Heterobasidion fungal species. Previous studies have reported the presence of regional and continental genetic differentiation in host-specific fungi, but the presence of such differentiation for generalist wood saprobes such as P. gigantea has not been often studied or demonstrated. Additionally, little information exists on the distribution of this fungus in western North America. The main purposes of this study were: (I) to assess the presence of P. gigantea in California, (II) to explore the genetic variability of P. gigantea at the intra and inter-continental levels and (III) to analyze the phylogeographic relationships between American and European populations. Seven loci (nrITS, ML5–ML6, ATP6, RPB1, RPB2, GPD and TEF1-α) from 26 isolates of P. gigantea from coniferous forests in diverse geographic distribution and from different hosts were analyzed in this study together with 45 GenBank sequences. One hundred seventy-four new sequences were generated using either universal or specific primers designed in this study. The mitochondrial ML5–ML6 DNA and ATP6 regions were highly conserved and did not show differences between any of the isolates. Conversely, DNA sequences from the ITS, RPB1, RPB2, GPD and TEF1-α loci were variable among samples. Maximum likelihood analysis of GPD and TEF1-α strongly supported the presences of two different subgroups within the species but without congruence or geographic partition, suggesting the presence of retained ancestral polymorphisms. RPB1 and RPB2 sequences separated European isolates from American ones, while the GPD locus separated western North American samples from eastern North American ones. This study reports the presence of P. gigantea in California for the first time using DNA-based confirmation and identifies two older genetically distinct subspecific groups, as well as three genetically differentiated lineages within the species: one from Europe, one from eastern North America and one from California, with the latter presumably including individuals from the rest of western North America. The genetic differentiation identified here among P. gigantea individuals from coniferous forests from different world regions indicates that European isolates of this fungus should not be used in North America (or vice versa), and, likewise, commercially available eastern North American P. gigantea isolates should not be used in western North America forests. The reported lack of host specificity of P. gigantea was documented by the field survey and further reinforces the need to only use local isolates of this biocontrol fungus, given that genetically distinct exotic genotypes of a broad generalist microbe may easily spread and permanently alter the microbial biodiversity of native forest ecosystems.


Sign in / Sign up

Export Citation Format

Share Document