Simulation Protocol for Core Flooding: Relative Permeability and Capillary Pressure Analysis

Author(s):  
S Kumar ◽  
Mariyamni Awang ◽  
Ghulam Abbas ◽  
Khurram Farouque ◽  
Sheraz Ahmed
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amir H. Haghi* ◽  
Richard Chalaturnyk ◽  
Stephen Talman

Abstract Relative permeability and capillary pressure are the governing parameters that characterize multiphase fluid flow in porous media for diverse natural and industrial applications, including surface water infiltration into the ground, CO2 sequestration, and hydrocarbon enhanced recovery. Although the drastic effects of deformation of porous media on single-phase fluid flow have been well established, the stress dependency of flow in multiphase systems is not yet fully explored. Here, stress-dependent relative permeability and capillary pressure are studied in a water-wet carbonate specimen both analytically using fractal and poroelasticity theory and experimentally on the micro-scale and macro-scales by means of X-ray computed micro-tomography and isothermal isotropic triaxial core flooding cell, respectively. Our core flooding program using water/N2 phases shows a systematic decrease in the irreducible water saturation and gas relative permeability in response to an increase in effective stress. Intuitively, a leftward shift of the intersection point of water/gas relative permeability curves is interpreted as an increased affinity of the rock to the gas phase. Using a micro-scale proxy model, we identify a leftward shift in pore size distribution and closure of micro-channels to be responsible for the abovementioned observations. These findings prove the crucial impact of effective stress-induced pore deformation on multiphase flow properties of rock, which are missing from the current characterizations of multiphase flow mechanisms in porous media.


2021 ◽  
Vol 13 (5) ◽  
pp. 2744
Author(s):  
Chia-Wei Kuo ◽  
Sally M. Benson

New guidelines and suggestions for taking reliable effective relative permeability measurements in heterogeneous rocks are presented. The results are based on a combination of high resolution of 3D core-flooding simulations and semi-analytical solutions for the heterogeneous cores. Synthetic “data sets” are generated using TOUGH2 and are subsequently used to calculate effective relative permeability curves. A comparison between the input relative permeability curves and “calculated” relative permeability is used to assess the accuracy of the “measured” values. The results show that, for a capillary number (Ncv = kLpc × A/H2μCO2qt) smaller than a critical value, flows are viscous dominated. Under these conditions, saturation depends only on the fractional flow as well as capillary heterogeneity, and is independent of flow rate, gravity, permeability, core length, and interfacial tension. Accurate whole-core effective relative permeability measurements can be obtained regardless of the orientation of the core and for a high degree of heterogeneity under a range of relevant and practical conditions. Importantly, the transition from the viscous to gravity/capillary dominated flow regimes occurs at much higher flow rates for heterogeneous rocks. For the capillary numbers larger than the critical value, saturation gradients develop along the length of the core and accurate relative permeability measurements are not obtained using traditional steady-state methods. However, if capillary pressure measurements at the end of the core are available or can be estimated from independently measured capillary pressure curves and the measured saturation at the inlet and outlet of the core, accurate effective relative permeability measurements can be obtained even when there is a small saturation gradient across the core.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Jiyuan Zhang ◽  
Bin Zhang ◽  
Shiqian Xu ◽  
Qihong Feng ◽  
Xianmin Zhang ◽  
...  

The relative permeability of coal to gas and water exerts a profound influence on fluid transport in coal seams in both primary and enhanced coalbed methane (ECBM) recovery processes where multiphase flow occurs. Unsteady-state core-flooding tests interpreted by the Johnson–Bossler–Naumann (JBN) method are commonly used to obtain the relative permeability of coal. However, the JBN method fails to capture multiple gas–water–coal interaction mechanisms, which inevitably results in inaccurate estimations of relative permeability. This paper proposes an improved assisted history matching framework using the Bayesian adaptive direct search (BADS) algorithm to interpret the relative permeability of coal from unsteady-state flooding test data. The validation results show that the BADS algorithm is significantly faster than previous algorithms in terms of convergence speed. The proposed method can accurately reproduce the true relative permeability curves without a presumption of the endpoint saturations given a small end-effect number of <0.56. As a comparison, the routine JBN method produces abnormal interpretation results (with the estimated connate water saturation ≈33% higher than and the endpoint water/gas relative permeability only ≈0.02 of the true value) under comparable conditions. The proposed framework is a promising computationally effective alternative to the JBN method to accurately derive relative permeability relations for gas–water–coal systems with multiple fluid–rock interaction mechanisms.


Sign in / Sign up

Export Citation Format

Share Document