An Interactive Numerical-Experimental Approach for Predicting the Vortex Induced Motion of Floating Production Systems

2021 ◽  
Author(s):  
Alaa M. Mansour ◽  
Cheng Peng ◽  
Stephane Le-Guennec ◽  
Hisham Moideen

Abstract The Vortex Induced Motion (VIM) phenomenon is one of the well-known and important behavior experienced by all Floating Production Systems (FPSs) in operation under the effect of uniform current. In this phenomenon, under the effect of the formed vortices around the FPS hull, the platform oscillates primarily in a direction perpendicular to the flow resulting in a significant fatigue damage to the risers and the station keeping mooring system. Scale towing tank test has been the standard industry tool for predicting the VIM response, but it has its own limitations and has showed to significantly overpredict the VIM response when compared to the field measurements. In this paper, an interactive numerical-experimental approach has been developed to more accurately predict the VIM response and avoid the shortcomings of the model tests to bridge the gap between the model test predictions and the field measurements. Numerical and experimental data are presented to demonstrate the application and advantages of the proposed approach

2015 ◽  
Vol 12 (2) ◽  
pp. 95-102
Author(s):  
Y. Yanuar ◽  
G. Gunawan ◽  
M. A. Talahatu ◽  
R. T. Indrawati ◽  
A. Jamaluddin

Resistance reduction in ship becomes an important issue to be investigated. Energy consumption and its efficiency are related toward drag reduction. Drag reduction in fluid flow can be obtained by providing polymer additives, coating, surfactants, fiber and special roughness on the surface hull. Fish skin surface coated with biopolymers viscous fluid (slime) is one method in frictional resistance reduction. The aim of this is to understanding the effect of drag reduction using eel slime biopolymer in unsymmetrical trimaran ship model. The Investigation was conducted using towing tank test with variation of velocity. The dimension of trimaran model are L = 2 m, B = 0.20 m and T = 0.065 m. The ship model resistance was precisely measured by a load cell transducer. The comparison of resistance on trimaran ship model coated and uncoated by eel slime are shown on the graph as a function of the total drag coefficient and Froude number. It is discovered the trimaran ship model by eel slime has higher drag reduction compared to trimaran with no eel slime at similar displacement. The result shows the drag reduction about 11 % at Fr 0.35.


Author(s):  
Ahmet Dursun Alkan ◽  
Onur Usta ◽  
Alpay Acar ◽  
Elis Atasayan

Luxury high-speed boats are increasingly being used for entertainment purposes. However, not only humans, but also animals are negatively affected by high-speed boats, and time is running out fast for people to do something about it. This study presents a review of current negative effects of high-speed boats to the environment. In this study, the flow around a benchmark planing Fridsma boat is simulated by CFD and resistance values for different non-dimensional Froude number (Fn) conditions are validated from the experimental results obtained from the literature. Using the same CFD methodology, a catamaran model in which the towing tank test results are available, is simulated for different Fn conditions and resistance values are predicted. In the CFD analysis, unsteady flow around the Fridsma hull model and catamaran model is simulated using overset meshing technique and turbulence is modeled by Reynolds Averaged Navier Stokes (RANS) with SST (Menter) k-omega turbulence model. Resistance values are compared with the experimental data and required propulsion powers are estimated for different Fn conditions. Then, total resistance of the catamaran for full-scale vessel is calculated using an extrapolation method and required propulsion power predictions are conducted. Noise prediction, corresponding to the required propulsion power are presented. In particular, the change of noise level and harmful gases released into the environment, when the speed of the vessel increases are examined and discussed. Consequently, it is believed that this study would lay an important foundation for the widespread investigation for the negative effects of the high-speed boats in the future.


2021 ◽  
Author(s):  
Lauren Honey ◽  
Carolyn Q. Judge ◽  
Christine M. Gilbert

Both towing tank experiments and wedge drop experiments are used to experimentally study slamming events on planning craft. The work presented in this paper shows a unique comparison between these two experiments. The first experiment was a towing tank test of a rigid hull in waves conducted at the U.S. Naval Academy. The second experiment was a series of free-falling water entry tests on a wedge conducted at Virginia Tech. In this paper, comparisons are drawn between the two experiments by using non-dimensional analysis and isolating similar slamming events. The non-dimensional impact velocities are chosen to be identical.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Farhood Azarsina ◽  
Christopher D. Williams

A two-dimensional simulation code is used to study the characteristics of constant-depth zigzag manoeuvres of the axisymmetric autonomous underwater vehicle (AUV) MUN Explorer. Sea trials data for several manoeuvres with the AUV have been reported during the past four years; however, to obtain a more complete understanding of the vehicle's hydrodynamics, additional towing tank tests and computer simulation were performed. The present work, based on the towing tank test results and sea-trials data, utilizes computer simulations to predict the performance of the MUN Explorer AUV during horizontal zigzag manoeuvres. Next, the Nomoto indices for this AUV during constant-depth zigzag manoeuvres are estimated using the simulation results, and, then, Nomoto's first-order model for the rate of turn of the vehicle during horizontal zigzag manoeuvres in response to a square-wave input for the rudder deflection angle is analytically solved. The paper investigates the validity of the simplified yaw equation to predict a zigzag manoeuvre. Results of this research are a first step to understand the details of zigzag manoeuvres of an AUV such as duration of the first execute, yaw-checking ability, and duration of the overshoot.


2005 ◽  
Author(s):  
Kai Graf ◽  
Christoph Bohm

A velocity prediction program (VPP) has been developed at the UAS Kiel, which implements a new method to model the hydrodynamic forces acting on the hull and appendages of a sailing yacht. Based on linear wing theory the model allows the derivation of a set of hydrodynamic coefficients for the VPP from a limited set of towing tank test runs. This approach makes the new VPP, called AVPP, in particular suitable to serve as a towing tank post-processor. The paper describes AVPP, the hydrodynamic model and the math behind the derivation of hydrodynamic coefficients from tank test results. Two examples are shown: a study of the impact of the ACC V4/V5 rule changes and a comparison of a canting keel and a conventional keel yacht.


2018 ◽  
Vol 159 ◽  
pp. 01057
Author(s):  
Eko Sasmito Hadi ◽  
Parlindungan Manik ◽  
Muhammad Iqbal

Geographically Indonesia which most of its territory consists of the sea, causing the necessity of strengthening maritime facilities and infrastructure to conduct activities of distribution of goods and sea transportation facilities, especially ships as a vehicle of sea transportation to maintain inter-island connectivity. Indonesian government builds national connectivity (sea tolls) by the development of pioneer ship design “Kapal Perintis.”. In this study, the vessel Perintis 750 DWT is still lacking in the EEDI (Energy Efficiency Design Index) aspect as required by IMO, so it is necessary to modify the hull part of the vessel to reduce the resistance. The modified hull is carried out by varying the angle of entrance bow of the ship ± 12° in step of 3°. Modifications were made using Delftship software, Computational Fluid Dynamic, called TDyn and verified by towing tank test at Indonesian Hydrodynamics Laboratory (IHL) Surabaya. Every change of the angle of entrance bow in 3 degrees, the ship's resistance will change more and less 3.5%. The smaller angle of entrance bow of the vessel the smaller ship's resistance.


2018 ◽  
Vol 25 (s1) ◽  
pp. 63-67
Author(s):  
Artur Karczewski ◽  
Janusz Kozak

Abstract In the paper selected approximate methods for calculation of inland waterways ship resistance and their verification by towing tests, compared on the example of a small urban ferry, are presented. The test results are made for both the bare hull and the hull with appendages (skeg, azimuthal propeller). Significant differences between results of the theoretical methods and experimental ones, especially in the case of the model with skegs and propulsion, are pointed out. The purposefulness of using several parametric methods and the use of average results at the preliminary design stage were also discussed.


Author(s):  
Yuto Korogi ◽  
Takurou Hiramatsu ◽  
Ken Takagi

We carry out resistance test and oblique towing tank test with a 1/100 scale model of VLMOS for investigating the effect of interaction among the many struts or between lower hull and struts. We also performed an experiment to test the stability of course keeping in which we imitate the wind drag force and sail force by adding external forces. Finally, we demonstrated the navigation performance of the structure with model sails. These results show that the structure has enough performance of the navigation, although the interaction effect due to vortex occurring at the rear part of strut is not negligible.


Sign in / Sign up

Export Citation Format

Share Document