The Challenge of Elastomer Seals for Blowout Preventer BOP and Wellhead/Christmas Trees under High Temperature

2021 ◽  
Author(s):  
Xuming Chen ◽  
Ray Zonoz ◽  
Hamid A. Salem

Abstract It is critically important for elastomer sealing components in blowout preventers (BOP) and wellheads to meet the pressure and temperature rating requirements under the newly released American Petroleum Institute (API) standards, API 16A (fourth edition) and API 6A (twenty-first edition) respectively. Extrusion resistance under high pressure and high temperature is one of the most critical challenge for the elastomer sealing components to meet the above API standards. This challenge is related to the basic properties of elastomer materials and mechanical design of the sealing components. This paper outlines how a simple and low-cost approach was developed to evaluate extrusion resistance of elastomer sealing components, and the correlation between critical tear pressure and extrusion gap of the two elastomers seals was evaluated using a power law equation. This correlation revealed that the above challenges of elastomer sealing components for BOPs and wellheads/Christmas trees is related to the weak strength of elastomers under high temperature and large clearances (extrusion gap) in current designs. New materials and/or new mechanical design to overcome such a challenge were also provided and discussed in this paper. The paper will help practicing engineers understand the challenge of material selection, mechanical design, and API testing as well as better understand the capability and limitation of sealing components for blowout preventors and wellhead applications under high pressure and/or high temperature (HPHT).

Author(s):  
Harris Prabowo ◽  
Badrul Munir ◽  
Yudha Pratesa ◽  
Johny W. Soedarsono

The scarcity of oil and gas resources made High Pressure and High Temperature (HPHT) reservoir attractive to be developed. The sour service environment gives an additional factor in material selection for HPHT reservoir. Austenitic 28 Cr and super duplex stainless steel 2507 (SS 2507) are proposed to be a potential materials candidate for such conditions. C-ring tests were performed to investigate their corrosion behavior, specifically sulfide stress cracking (SSC) and sulfide stress cracking susceptibility. The C-ring tests were done under 2.55 % H2S (31.48 psia) and 50 % CO2 (617.25 psia). The testing was done in static environment conditions. Regardless of good SSC resistance for both materials, different pitting resistance is seen in both materials. The pitting resistance did not follow the general Pitting Resistance Equivalent Number (PREN), since SS 2507 super duplex (PREN > 40) has more pitting density than 28 Cr austenitic stainless steel (PREN < 40). SS 2507 super duplex pit shape tends to be larger but shallower than 28 Cr austenitic stainless steel. 28 Cr austenitic stainless steel has a smaller pit density, yet deeper and isolated.


Author(s):  
Erik Rosado Tamariz ◽  
Rito Mijarez Castro ◽  
Agustín Javier Antúnez Estrada ◽  
Alfonso Campos Amezcua ◽  
David Pascacio Maldonado ◽  
...  

Measurement of high pressure and high temperature (HPHT) tools is regularly carried out in the hydrocarbons sector to determine not only the characteristics and performance of fluids inside the well, but also to evaluate the mechanical condition of the pipes and the automation of production. The mechanical features of these tools are significantly influenced by the mechanical design of the structure, which eventually affects their performance and integrity. This paper describes the design process and the analysis of the structural integrity of a HPHT measuring tool for oil wells in its sensors section. The classical theories of mechanical design and specifications of the ASME boilers and pressure vessels code were used. The study is performed for several operation variables in a numerical model using a commercial code of finite element method to determinate the maximum principal stresses, total displacements and safety factor in the mechanical elements that form the device. The numerical results were compared with the experimental data source from the laboratory tests.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 629-634 ◽  
Author(s):  
M. Serra ◽  
I. Pereiro ◽  
A. Yamada ◽  
J.-L. Viovy ◽  
S. Descroix ◽  
...  

An adhesive-based strategy for the low-cost and reversible sealing of a wide range of materials used in microfluidics, requiring only the application of manually-achievable pressures.


2010 ◽  
Author(s):  
Walter Nunez Garcia ◽  
Ricardo Solares ◽  
Jairo Alonso Leal Jauregui ◽  
Jorge E. Duarte ◽  
Alejandro Chacon ◽  
...  

1962 ◽  
Vol 84 (1) ◽  
pp. 139-149
Author(s):  
V. Z. Caracristi ◽  
H. D. Mumper

The development and application of a processed lignite fuel to the generation of high-pressure, high-temperature steam are described. The economics of this processed fuel for steam generation is a part of the over-all economics of low-cost power generation for the production of aluminum.


2020 ◽  
Vol 10 (13) ◽  
pp. 4545 ◽  
Author(s):  
Han Seo ◽  
Jae Eun Cha ◽  
Jaemin Kim ◽  
Injin Sah ◽  
Yong-Wan Kim

This paper presents a preliminary design and performance analysis of a supercritical CO2 (SCO2) heat exchanger for an SCO2 power generation system. The purpose of designing a SCO2 heat exchanger is to provide a high-temperature and high-pressure heat exchange core technology for advanced SCO2 power generation systems. The target outlet temperature and pressure for the SCO2 heat exchanger were 600 °C and 200 bar, respectively. A tubular type with a staggered tube bundle was selected as the SCO2 heat exchanger, and liquefied petroleum gas (LPG) and air were selected as heat sources. The design of the heat exchanger was based on the material selection and available tube specification. Preliminary performance evaluation of the SCO2 heat exchanger was conducted using an in-house code, and three-dimensional flow and thermal stress analysis were performed to verify the tube’s integrity. The simulation results showed that the tubular type heat exchanger can endure high-temperature and high-pressure conditions under an SCO2 environment.


Author(s):  
Andrew Blaquiere ◽  
Daniel Reagan ◽  
Ricky Thethi

As the majority of “easy access” reservoirs have been discovered, deep water exploration and production is at the forefront of the Oil & Gas industry. Operators have utilized Top Tensioned Riser (TTR) systems in deepwater on Spar and TLP platforms and are now well established in the US Gulf of Mexico (GoM), West Africa and Asia. However, new reservoirs, particularly in the US Gulf, will be discovered in ultra-deep water (∼10,000 ft) with high pressure (HP) (>15 ksi) and high temperature (HT) (>284 °F). In such conditions, the criticality and complexity of a production TTR system is significantly increased. This paper addresses key design issues and considerations including wall thickness sizing, material selection, manufacturing capabilities, interface management and qualification testing.


Author(s):  
Rafael F. Solano ◽  
Bruno R. Antunes ◽  
Alexandre S. Hansen ◽  
T. Sriskandarajah ◽  
Carlos R. Charnaux ◽  
...  

Global buckling is a behavior observed on subsea pipelines operating under high pressure and high temperature conditions which can jeopardize its structural integrity if not properly controlled. The thermo-mechanical design of such pipelines shall be robust in order to manage some uncertainties, such as: out-of-straightness and pipe-soil interaction. Pipeline walking is another phenomenon observed in those pipelines which can lead to accumulated displacement and overstress on jumpers and spools. In addition, global buckling and pipeline walking can have strong interaction along the route of a pipeline on uneven and sloped seabed, increasing the challenges of thermo-mechanical design. The P-55 oil export pipeline has approximately 42km length and was designed to work under severe high pressure and high temperature conditions, on a very uneven seabed, including different soil types and wall thicknesses along the length and a significant number of crossings. Additionally, the pipeline is expected to have a high amount of partial and full shutdowns during operation, resulting in an increase in design complexity. During design, many challenges arose in order to “control” the lateral buckling behavior and excessive walking displacements, and finite element analysis was used to understand and assess the pipeline behavior in detail. This paper aims to provide an overview of the lateral buckling and walking design of the P-55 oil export pipeline and to present the solutions related to technical challenges faced during design due to high number of operational cycles. Long pipelines are usually characterized as having a low tendency to walking; however in this case, due to the seabed slope and the buckle sites interaction, a strong walking tendency has been identified. Thus, the main items of the design are discussed in this paper, as follows: lateral buckling triggering and “control” approach, walking in long pipelines and mitigate anchoring system, span correction and its impact on thermo-mechanical behavior.


Sign in / Sign up

Export Citation Format

Share Document