Accelerated Development of Subsurface Safety Valve Technologies

2021 ◽  
Author(s):  
Jason Wade Edwards

Abstract Described is a methodology for accelerating the development of innovative and high-risk technologies, specifically, subsurface safety valve technologies. Focus is on methods of mitigating technical and commercial risks that can delay or prevent successful development of new technologies. Example risk assessment and risk mitigation strategies are provided from a recent subsurface safety valve technology development project. Mitigation strategies include fixture level testing, design changes, and deep client collaboration. In the example project, it is estimated that the total development time was reduced by as much as 50% by implementing these strategies. While a subsurface safety valve development is used in this example, it is believed that many strategies are applicable to other domains.

2015 ◽  
Vol 208 (6) ◽  
pp. 655-657 ◽  
Author(s):  
Bas van Steensel

New technologies drive progress in many research fields, including cell biology. Much of technological innovation comes from “bottom-up” efforts by individual students and postdocs. However, technology development can be challenging, and a successful outcome depends on many factors. This article outlines some considerations that are important when embarking on a technology development project. Despite the challenges, developing a new technology can be extremely rewarding and could lead to a lasting impact in a given field.


Author(s):  
Agnes Ann Feemster ◽  
Melissa Augustino ◽  
Rosemary Duncan ◽  
Anand Khandoobhai ◽  
Meghan Rowcliffe

Abstract Disclaimer In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The purpose of this study was to identify potential failure points in a new chemotherapy preparation technology and to implement changes that prevent or minimize the consequences of those failures before they occur using the failure modes and effects analysis (FMEA) approach. Methods An FMEA was conducted by a team of medication safety pharmacists, oncology pharmacists and technicians, leadership from informatics, investigational drug, and medication safety services, and representatives from the technology vendor. Failure modes were scored using both Risk Priority Number (RPN) and Risk Hazard Index (RHI) scores. Results The chemotherapy preparation workflow was defined in a 41-step process with 16 failure modes. The RPN and RHI scores were identical for each failure mode because all failure modes were considered detectable. Five failure modes, all attributable to user error, were deemed to pose the highest risk. Mitigation strategies and system changes were identified for 2 failure modes, with subsequent system modifications resulting in reduced risk. Conclusion The FMEA was a useful tool for risk mitigation and workflow optimization prior to implementation of an intravenous compounding technology. The process of conducting this study served as a collaborative and proactive approach to reducing the potential for medication errors upon adoption of new technology into the chemotherapy preparation process.


Author(s):  
Takeshi Yamamoto ◽  
Kazuo Shimodaira ◽  
Seiji Yoshida ◽  
Yoji Kurosawa

The Japan Aerospace Exploration Agency (JAXA) is conducting research and development on aircraft engine technologies to reduce environmental impact for the Technology Development Project for Clean Engines (TechCLEAN). As a part of the project, combustion technologies have been developed with an aggressive target that is an 80% reduction over the NOx threshold of the International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP)/4 standard. A staged fuel nozzle with a pilot mixer and a main mixer was developed and tested using a single-sector combustor under the target engine's landing and takeoff (LTO) cycle conditions with a rated output of 40 kN and an overall pressure ratio of 25.8. The test results showed a 77% reduction over the CAEP/4 NOx standard. However, the reduction in smoke at thrust conditions higher than the 30% MTO condition and of CO emission at thrust conditions lower than the 85% MTO condition are necessary. In the present study, an additional fuel burner was designed and tested with the staged fuel nozzle in a single-sector combustor to control emissions. The test results show that the combustor enables an 82% reduction in NOx emissions relative to the ICAO CAEP/4 standard and a drastic reduction in smoke and CO emissions.


Author(s):  
Leigh McCue

Abstract The purpose of this work is to develop a computationally efficient model of viral spread that can be utilized to better understand influences of stochastic factors on a large-scale system - such as the air traffic network. A particle-based model of passengers and seats aboard a single-cabin 737-800 is developed for use as a demonstration of concept on tracking the propagation of a virus through the aircraft's passenger compartment over multiple flights. The model is sufficiently computationally efficient so as to be viable for Monte Carlo simulation to capture various stochastic effects, such as number of passengers, number of initially sick passengers, seating locations of passengers, and baseline health of each passenger. The computational tool is then exercised in demonstration for assessing risk mitigation of intervention strategies, such as passenger-driven cleaning of seating environments and elimination of middle seating.


2020 ◽  
Vol 4;23 (7;4) ◽  
pp. E335-E342
Author(s):  
Jason Friedrich

Background: More patients with cardiac implantable electrical devices (CIEDs) are presenting to spine and pain practices for radiofrequency ablation (RFA) procedures for chronic pain. Although the potential for electromagnetic interference (EMI) affecting CIED function is known with RFA procedures, available guidelines do not specifically address CIED management for percutaneous RFA for zygapophyseal (z-joint) joint pain, and thus physician practice may vary. Objectives: To better understand current practices of physicians who perform RFA for chronic z-joint pain with respect to management of CIEDs. Perioperative CIED management guidelines are also reviewed to specifically address risk mitigation strategies for potential EMI created by ambulatory percutaneous spine RFA procedures. Study Design: Web-based provider survey and narrative review. Setting: Multispecialty pain clinic, academic medical center. Methods: A web-based survey was created using Research Electronic Data Capture (REDCap). A survey link was provided via e-mail to active members of the Spine Intervention Society (SIS), American Society of Regional Anesthesia and Pain Medicine, as well as distributed freely to community Pain Physicians and any receptive academic departments of PM&R or Anesthesiology. The narrative review summarizes pertinent case series, review articles, a SIS recommendation statement, and multi-specialty peri-operative guidelines as they relate specifically to spine RFA procedures. Results: A total of 197 clinicians participated in the survey from diverse clinical backgrounds, including anesthesiology, physical medicine and rehabilitation, radiology, neurosurgery, and neurology, with 81% reporting fellowship training. Survey responses indicate wide variability in provider management of CIEDs before, during, and after RFA for z-joint pain. Respondents indicated they would like more specific guidelines to aid in management and decision-making around CIEDs and spine RFA procedures. Literature review yielded several practice guidelines related to perioperative management of CIEDs, but no specific guideline for percutaneous spine RFA procedures. However, combining the risk mitigation strategies provided in these guidelines, with interventional pain physician clinical experience allows for reasonable management recommendations to aid in decision-making. Limitations: Although this manuscript can serve as a review of CIEDs and aid in management decisions in patients with CIEDs, it is not a clinical practice guideline. Conclusions: Practice patterns vary regarding CIED management in ambulatory spine RFA procedures. CIED presence is not a contraindication for spine RFA but does increase the complexity of a spine RFA procedure and necessitates some added precautions. Key words: Radiofrequency ablation, neurotomy, cardiac implantable electrical device, zygapophyseal joint, spondylosis, neck pain, low back pain, chronic pain


Sign in / Sign up

Export Citation Format

Share Document