scholarly journals Differentiation Stage-Specific Requirement in Hypoxia-Inducible Factor-1α–Regulated Glycolytic Pathway during Murine B Cell Development in Bone Marrow

2009 ◽  
Vol 184 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Hidefumi Kojima ◽  
Ayano Kobayashi ◽  
Daisuke Sakurai ◽  
Yumiko Kanno ◽  
Hidenori Hase ◽  
...  
2021 ◽  
Author(s):  
Natalie Burrows ◽  
Rachael J. M. Bashford-Rogers ◽  
Vijesh J. Bhute ◽  
Ana Peñalver ◽  
John R. Ferdinand ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 1408-1420
Author(s):  
Natalie Burrows ◽  
Rachael J. M. Bashford-Rogers ◽  
Vijesh J. Bhute ◽  
Ana Peñalver ◽  
John R. Ferdinand ◽  
...  

2012 ◽  
Vol 131 (2) ◽  
pp. 434-446 ◽  
Author(s):  
Alexander D. R. Kelly ◽  
Maryse Lemaire ◽  
Yoon Kow Young ◽  
Jules H. Eustache ◽  
Cynthia Guilbert ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e103970 ◽  
Author(s):  
Yingchi Zhang ◽  
Tianyuan Hu ◽  
Chunlan Hua ◽  
Jie Gu ◽  
Liyan Zhang ◽  
...  

Cell Research ◽  
2011 ◽  
Vol 21 (7) ◽  
pp. 1102-1115 ◽  
Author(s):  
Anna Mansour ◽  
Adrienne Anginot ◽  
Stéphane J C Mancini ◽  
Claudine Schiff ◽  
Georges F Carle ◽  
...  

2007 ◽  
Vol 204 (9) ◽  
pp. 2047-2051 ◽  
Author(s):  
Simona Ferrari ◽  
Vassilios Lougaris ◽  
Stefano Caraffi ◽  
Roberta Zuntini ◽  
Jianying Yang ◽  
...  

Agammaglobulinemia is a rare primary immunodeficiency characterized by an early block of B cell development in the bone marrow, resulting in the absence of peripheral B cells and low/absent immunoglobulin serum levels. So far, mutations in Btk, μ heavy chain, surrogate light chain, Igα, and B cell linker have been found in 85–90% of patients with agammaglobulinemia. We report on the first patient with agammaglobulinemia caused by a homozygous nonsense mutation in Igβ, which is a transmembrane protein that associates with Igα as part of the preBCR complex. Transfection experiments using Drosophila melanogaster S2 Schneider cells showed that the mutant Igβ is no longer able to associate with Igα, and that assembly of the BCR complex on the cell surface is abrogated. The essential role of Igβ for human B cell development was further demonstrated by immunofluorescence analysis of the patient's bone marrow, which showed a complete block of B cell development at the pro-B to preB transition. These results indicate that mutations in Igβ can cause agammaglobulinemia in man.


2014 ◽  
Vol 42 (8) ◽  
pp. S39
Author(s):  
Chunlan Hua ◽  
Tianyuan Hu ◽  
Yingchi Zhang ◽  
Tao Cheng ◽  
Weiping Yuan

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3318-3318
Author(s):  
Nahed El Kassar ◽  
Baishakhi Choudhury ◽  
Francis Flomerfelt ◽  
Philip J. Lucas ◽  
Veena Kapoor ◽  
...  

Abstract IL-7 is a non-redundant cytokine in T cell development. We studied the role of IL-7 in early T-cell development using a model of transgenic (Tg) mice with the murine IL-7 gene under control of the lck proximal promoter. At high IL-7 over-expression (x39 fold increase at day 1 in total thymic tissue), we observed a disruption of TCRαβ development along with increased B cell development in the thymus (7- to 13-fold increase) (El Kassar, Blood, 2004). In order to further explore abnormal T and B cell thymic development in these mice, we first confirmed that they both arise in parallel and were non-cell autonomous, by in vivo injection of neutralizing anti-IL-7 MAb and mixed bone marrow chimera experiments. Using a six color flow cytometry analysis, we found a dramatic decrease of the early thymocyte progenitors (ETPs, lin−CD44+CD25−c-kithiIL-7R−/lo) in the adult Tg mice (x4.7 fold decrease). Lin−CD44+CD25−c-kit+ thymocytes were sorted and cultured on OP9 and OP9 delta-like1 (OP9-DL1) stromal cells (kindly provided by Pr Zuniga Pflucker). At day 14, we observed an important decrease of T cell development (54% vs. 1% of DP cells) and an increase of NK cells (x5 fold increase) in the Tg-derived DN1 cell culture. DN2 (Lin−CD44+CD25−c-kit+) Tg thymocytes showed the same, but less dramatic abnormalities. While DN1 progenitors developed effectively into B220+CD19+ cells on OP9 stromal cells, no B cell development was observed on OP-DL stromal cells from DN1-Tg derived progenitors or by addition of increasingly high doses of IL-7 (x10, x40, x160) to normal B6-derived DN1 progenitors. Instead, a block of T-cell development was observed with increased IL-7. We hypothesized a down regulation of Notch signaling by IL-7 over-expression and analyzed by FACS Notch expression in the DN thymocytes. By staining the intra-cellular part of Notch cleaved after Notch 1/Notch ligand activation, Tg-derived DN2 cells showed decreased Notch signaling. More importantly, HES expression was decreased in the DN2, DN3 and DN4 fractions by semi-quantitative PCR. Sorted Pro/Pre B cells from Tg thymi showed TCR Dβ1-Jβ1 rearrangement indicating their T specific origin, in opposition to Pro/Pre B cells sorted from the bone marrow of the same mice. We suggest that more than one immature progenitor seeds the thymus from the bone marrow. While ETPs had T and NK proliferative capacity, another thymic progenitor with B potential may be responsible for thymic B cell development in normal and IL-7 Tg mice. Finally, IL-7 over-expression may induce a decreased Notch signaling in thymic progenitors, inducing a switch of T vs. B lineage development.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1466-1466
Author(s):  
Christopher D Chien ◽  
Elizabeth D Hicks ◽  
Paul P Su ◽  
Haiying Qin ◽  
Terry J Fry

Abstract Abstract 1466 Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Although cure rates for this disease are approximately 90%, ALL remains one of the leading causes cancer-related deaths in children. Thus, new treatments are needed for those patients that do not respond to or recur following standard chemotherapy. Understanding the mechanisms underlying resistance of pediatric ALL to therapy offers one approach to improving outcomes. Recent studies have demonstrated the importance of communication between cancer cells and their microenvironment and how this contributes to the progression and therapeutic resistance but this has not been well studied in the context of ALL. Since the bone marrow is presumed to be the site of initiation of B precursor ALL we set out in our study to determine how ALL cells utilize the bone marrow milieu in a syngeneic transplantable model of preB cell ALL in immunocompetent mice. In this model, intravenously injected preB ALL develops first in the bone marrow, followed by infiltration into the spleen, lymph node, and liver. Using flow cytometry to detect the CD45.2 isoform following injection into B6CD45.1+ congenic recipients, leukemic cells can be identified in the bone marrow as early as 5 days after IV injection with a sensitivity of 0.01%-0.1%. The pre-B ALL line is B220+/CD19+/CD43+/BP1+/IL-7Ralpha (CD127)+/CD25-/Surface IgM-/cytoplasmic IgM+ consistent with a pre-pro B cell phenotype. We find that increasing amounts of leukemic infiltration in the bone marrow leads to an accumulation of non-malignant developing B cells at stages immediately prior to the pre-pro B cell (CD43+BP1-CD25-) and a reduction in non-malignant developing pre B cells at the developmental stage just after to the pre-pro B cell stage (CD43+BP1+CD25+). These data potentially suggest occupancy of normal B cell developmental niches by leukemia resulting in block in normal B cell development. Further supporting this hypothesis, we find significant reduction in early progression of ALL in aged (10–12 month old) mice known to have a deficiency in B cell developmental niches. We next explored whether specific factors that support normal B cell development can contribute to progression of precursor B cell leukemia. The normal B cell niche has only recently been characterized and the specific contribution of this niche to early ALL progression has not been extensively studied. Using a candidate approach, we examined the role of specific cytokines such as Interleukin-7 (IL-7) and thymic stromal lymphopoietin (TSLP) in early ALL progression. Our preB ALL line expresses high levels of IL-7Ralpha and low but detectable levels of TLSPR. In the presence of IL-7 (0.1 ng/ml) and TSLP (50 ng/ml) phosphSTAT5 is detectable indicating that these receptors are functional but that supraphysiologic levels of TSLP are required. Consistent with the importance of IL-7 in leukemia progression, preliminary data demonstrates reduced lethality of pr-B cell ALL in IL-7 deficient mice. Overexpression of TSLP receptor (TSLPR) has been associated with high rates of relapse and poor overall survival in precursor B cell ALL. We are currently generating a TSLPR overepressing preBALL line to determine the effect on early ALL progression and are using GFP-expressing preB ALL cells to identify the initial location of preB ALL occupancy in the bone marrow. In conclusion, or model of early ALL progression provides insight into the role of the bone marrow microenvironment in early ALL progression and provides an opportunity to examine how these microenvironmental factors contribute to therapeutic resistance. Given recent advances in immunotherapy for hematologic malignancies, the ability to study this in an immunocompetent host will be critical. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3465-3465
Author(s):  
Edyta Pawelczyk ◽  
Heba A Degheidy ◽  
Allison L Branchaw ◽  
Kenn Holmbeck ◽  
Steven R Bauer

Abstract Abstract 3465 Introduction: DLK-1(delta-like 1) is a member of the EGF-like homeotic protein family whose expression is known to influence cell fate decisions through cell-cell interactions. It is also known to influence the differentiation of bone marrow stromal cells (BMSC) and hematopoietic stem cells (HSC) in bone marrow. Recently, we reported the essential role of DLK-1 in B cell development, which showed that the absence of DLK-1 led to accumulation of the earliest B cell progenitors (pre-pro B cells or Fraction A (Fr A)) in bone marrow, an altered pattern of B cell development in the spleen, and an altered humoral immune response. The objective of this study was to determine whether alterations in the HSC compartment or the BMSC microenvironment contributed to Fr A accumulation in mdlk1−/− mice. Methods: The mdlk1−/− and wild type bone marrow osteoblast and HSC compartments were analyzed by multicolor flow cytometry and in vitro methyl-cellulose colony forming cell assays. Bone marrow harvested from mdlk1−/− and wild type mice was assessed for BMSCs colony forming efficiency (CFU-F) and cultured. Supernatants from cultured BMSCs were analyzed by protein arrays. Since osteoblasts are an important component of the bone marrow microenvironment, OPN+CD45-TER119-ALP+ osteoblasts were identified in the bone marrow and quantified by flow cytometry. Finally, the femurs of mdlk1−/− and wild type mice were analyzed by micro-computed tomography (uCT) scanning. Results: Using flow cytometry, we observed no statistically significant changes in the HSC and progenitor populations in the absence of DLK-1 in mice at 4 and 16 weeks of age. The results of methyl-cellulose assay confirmed the findings of flow cytometry experiments and showed no statistically significant differences in the number of CFU-G, CFU-GM, and CFU-M of 4 and 16 week old mdlk1−/− mice as compared to wild-type control mice. However, significant alterations in the microenvironment of the mdlkl −/− were observed. CFU-F efficiency of mdlk1−/− bone marrow BMSC isolated from 4 week old mice was significantly decreased when compared to age-matched controls. Furthermore, the uCT scans showed the mineral density of the femoral bone significantly decreased in 4 week old mdlk1−/− mice and the number of osteoblast cells analyzed by flow cytometry was decreased by 10%. The analysis of BMSC supernatants revealed a striking down regulation of factors associated with osteoblast function and differentiation such as osteoactivin, PF-4, Follstatin-like 1, Frizzled-6, IGF-1, M-CSF, DKK-1 and others. Conclusions: Our results indicate that accumulation of the earliest B cell progenitors with DLK-1 ablation is the result of multiple defects in the bone marrow microenvironment including decreased CFU-F, decreased number of osteoblasts, decreased bone mineral density or alterations in factors important for osteoblast function but not from increase in numbers of hematopoietic stem or progenitors cells. Our laboratory is investigating this further. Disclosures: Pawelczyk: Baxter Inc.: currently employed by Baxter Inc. Other.


Sign in / Sign up

Export Citation Format

Share Document