scholarly journals STIM1-Independent T Cell Development and Effector Function In Vivo

2009 ◽  
Vol 182 (6) ◽  
pp. 3390-3397 ◽  
Author(s):  
Niklas Beyersdorf ◽  
Attila Braun ◽  
Timo Vögtle ◽  
David Varga-Szabo ◽  
Ronmy Rivera Galdos ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 73-73
Author(s):  
Kazuaki Yokoyama ◽  
Nozomi Yokoyama ◽  
Kiyoko Izawa ◽  
Ai Kotani ◽  
Ratanakanit Harnprasopwat ◽  
...  

Abstract Abstract 73 Interleukin-7 (IL7) is essential for T cell development and homeostasis. Dysregulation of signals that control normal T-cell development has been implicated in the onset of T-cell acute lymphoblastic leukemia (T-ALL). By analogy to activating mutations in the Notch pathways, we hypothesized that any mutations in the IL7 signaling axis might also contribute to T-ALL. Direct sequencing of human IL7 receptor a chain (hIL7RA) gene in a panel of 16 T-ALL cell lines identified two types of mutations in two different cell lines. One was an insertion mutation of 4 amino acids (LSRC) in the transmembrane region (INS, Fig.1A) from DND-41, a gamma-delta TCR+ T-ALL cell line, and the other was a truncated, loss-of-function, mutation in the cytoplasmic region from MOLT-4. We demonstrated that hIL7RA-INS mutant spontaneously formed a homodimer and constitutively activated downstream signals including Stat family members (1, 3 and 5), Akt and Erk via Jak1, but not Jak3. Next, we investigated oncogenic activity of hIL7RA-INS in primary hematopoietic progenitor cells. To this aim, lin− E.14 Balb/c fetal liver (FL) cells were retrovirally transduced with hIL7RA-INS in parallel with hIL7RA-wild type (WT), and then tested for their cytokine dependence in vitro. As expected, only hIL7RA-INS-transduced lin−FL cells showed abrogation of cytokine dependence. hIL7RA-transduced lin−FL cells were also transplanted into lethally irradiated syngeneic mice. Within 7–9 weeks after transplantation of lin−FL cells transduced with hIL7RA-INS, but not with hIL7RA-WT, recipient mice developed well-tolerated myelo- and lymphoproliferative disorders, characterized by marked leukocytosis, systemic lymphadenopathy and splenomegaly (Fig.1B). Notably, concomitant increase in hIL7RA+gamma-delta TCR+ T cells and decrease in B cells were observed in peripheral blood (Fig.1C). Histological examination of bone marrow, spleen and liver specimens from diseased mice revealed moderate to severe myeloid hyperplasia, disrupted splenic architecture by disseminated mature myeloid cells and infiltration of both myeloid and mononuclear cells into hepatic parenchyma, respectively. In addition, recipient mice for hIL7RA-INS-transduced lin−FL cells frequently manifested ruffled fur as well as mononuclear cell infiltration into salivary gland and pericardium, suggesting an autoimmune-like disorder. However, during median follow-up of 11 weeks, these recipient mice did not develop either overt leukemia or lymphoma, indicating that additional transforming events are required for evolution to aggressive hematological malignancies. These in vivo findings highlighted the possibility that aberrant signals via IL7RA in hematopoietic stem/progenitor cells might preferentially stimulate myelopoiesis over lymphopoiesis, and also confirmed the essential role of IL7RA in gamma-delta TCR+ T cell development, previously shown by IL7RA-knockout mice. Taken together, we speculated that dysregulated IL7RA signaling axis might be involved in the onset of T-ALL, especially with gamma-delta TCR+ phenotype. Finally, the present study, together with the recent report (JEM 208:901, 2011), emphasizes the significance of the sequential Notch-IL7RA pathways in the pathogenesis of T-ALL as well as the dominant role of the IL7RA/Jak1 axis in IL7 proliferative signal. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 62 (7) ◽  
pp. 994-1001 ◽  
Author(s):  
Jan G.M.C. Damoiseaux ◽  
Leo J.J. Beijleveld ◽  
Henk-Jan Schuurman ◽  
Peter J.C. van Breda Vriesman

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52949 ◽  
Author(s):  
Afonso Rocha Martins Almeida ◽  
Sílvia Arroz-Madeira ◽  
Diogo Fonseca-Pereira ◽  
Hélder Ribeiro ◽  
Reena Lasrado ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 193-200 ◽  
Author(s):  
Rafik Terra ◽  
Isabelle Louis ◽  
Richard Le Blanc ◽  
Sophie Ouellet ◽  
Juan Carlos Zúñiga-Pflücker ◽  
...  

In the thymus, 2 types of Lin–Sca-1+ (lineage-negative stem cell antigen-1–positive) progenitors can generate T-lineage cells: c-Kithi interleukin-7 receptor α–negative (c-KithiIL-7Rα–) and c-KitloIL-7Rα+. While c-KithiIL-7Rα– progenitors are absent, c-KitloIL-7Rα+ progenitors are abundant in the lymph nodes (LNs). c-KitloIL-7Rα+ progenitors undergo abortive T-cell commitment in the LNs and become arrested in the G1 phase of the cell cycle because they fail both to up-regulate c-myb, c-myc, and cyclin D2 and to repress junB, p16INK4a, and p21Cip1/WAF. As a result, development of LN c-KitloIL-7Rα+ progenitors is blocked at an intermediate CD44+CD25lo development stage in vivo, and LN-derived progenitors fail to generate mature T cells when cultured with OP9-DL1 stromal cells. LN stroma can provide key signals for T-cell development including IL-7, Kit ligand, and Delta-like–1 but lacks Wnt4 and Wnt7b transcripts. LN c-KitloIL-7Rα+ progenitors are able to generate mature T cells when cultured with stromal cells producing wingless-related MMTV integration site 4 (Wnt4) or upon in vivo exposure to oncostatin M whose signaling pathway intersects with Wnt. Thus, supplying Wnt signals to c-KitloIL-7Rα+ progenitors may be sufficient to transform the LN into a primary T-lymphoid organ. These data provide unique insights into the essence of a primary T-lymphoid organ and into how a cryptic extrathymic T-cell development pathway can be amplified.


Blood ◽  
2010 ◽  
Vol 115 (6) ◽  
pp. 1137-1144 ◽  
Author(s):  
Namita Saran ◽  
Marcin Łyszkiewicz ◽  
Jens Pommerencke ◽  
Katrin Witzlau ◽  
Ramin Vakilzadeh ◽  
...  

Abstract T-cell development in the thymus depends on continuous supply of T-cell progenitors from bone marrow (BM). Several extrathymic candidate progenitors have been described that range from multipotent cells to lymphoid cell committed progenitors and even largely T-lineage committed precursors. However, the nature of precursors seeding the thymus under physiologic conditions has remained largely elusive and it is not known whether there is only one physiologic T-cell precursor population or many. Here, we used a competitive in vivo assay based on depletion rather than enrichment of classes of BM-derived precursor populations, thereby only minimally altering physiologic precursor ratios to assess the contribution of various extrathymic precursors to T-lineage differentiation. We found that under these conditions multiple precursors, belonging to both multipotent progenitor (MPP) and common lymphoid progenitor (CLP) subsets have robust T-lineage potential. However, differentiation kinetics of different precursors varied considerably, which might ensure continuous thymic output despite gated importation of extrathymic precursors. In conclusion, our data suggest that the thymus functions to impose T-cell fate on any precursor capable of filling the limited number of progenitor niches.


2009 ◽  
Vol 206 (13) ◽  
pp. 2987-3000 ◽  
Author(s):  
Tomonori Hosoya ◽  
Takashi Kuroha ◽  
Takashi Moriguchi ◽  
Dustin Cummings ◽  
Ivan Maillard ◽  
...  

Most T lymphocytes appear to arise from very rare early T lineage progenitors (ETPs) in the thymus, but the transcriptional programs that specify ETP generation are not completely known. The transcription factor GATA-3 is required for the development of T lymphocytes at multiple late differentiation steps as well as for the development of thymic natural killer cells. However, a role for GATA-3 before the double-negative (DN) 3 stage of T cell development has to date been obscured both by the developmental heterogeneity of DN1 thymocytes and the paucity of ETPs. We provide multiple lines of in vivo evidence through the analysis of T cell development in Gata3 hypomorphic mutant embryos, in irradiated mice reconstituted with Gata3 mutant hematopoietic cells, and in mice conditionally ablated for the Gata3 gene to show that GATA-3 is required for ETP generation. We further show that Gata3 loss does not affect hematopoietic stem cells or multipotent hematopoietic progenitors. Finally, we demonstrate that Gata3 mutant lymphoid progenitors exhibit neither increased apoptosis nor diminished cell-cycle progression. Thus, GATA-3 is required for the cell-autonomous development of the earliest characterized thymic T cell progenitors.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3432-3440 ◽  
Author(s):  
Ling Zhao ◽  
Jennifer L. Cannons ◽  
Stacie Anderson ◽  
Martha Kirby ◽  
Liping Xu ◽  
...  

Abstract Recent studies suggest that the chromosome 16 inversion, associated with acute myeloid leukemia M4Eo, takes place in hematopoietic stem cells. If this is the case, it is of interest to know the effects of the resulting fusion gene, CBFB-MYH11, on other lineages. Here we studied T-cell development in mice expressing Cbfb-MYH11 and compared them with mice compound-heterozygous for a Cbfb null and a hypomorphic GFP knock-in allele (Cbfb−/GFP), which had severe Cbfb deficiency. We found a differentiation block at the DN1 stage of thymocyte development in Cbfb-MYH11 knock-in chimeras. In a conditional knock-in model in which Cbfb-MYH11 expression was activated by Lck-Cre, there was a 10-fold reduction in thymocyte numbers in adult thymus, resulting mainly from impaired survival of CD4+CD8+ thymocytes. Although Cbfb-MYH11 derepressed CD4 expression efficiently in reporter assays, such derepression was less pronounced in vivo. On the other hand, CD4 expression was derepressed and thymocyte development was blocked at DN1 and DN2 stages in E17.5 Cbfb−/GFP thymus, with a 20-fold reduction of total thymocyte numbers. Our data suggest that Cbfb-MYH11 suppressed Cbfb in several stages of T-cell development and provide a mechanism for CBFB-MYH11 association with myeloid but not lymphoid leukemia.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 184-184
Author(s):  
Takeshi Isoda ◽  
Masatoshi Takagi ◽  
Jinhua Piao ◽  
Shun Nakagama ◽  
Masaki Sato ◽  
...  

Abstract Abstract 184FN2 Ataxia Telangiectagia (AT) is an autosomal recessive immunodeficiency, caused by mutation of ataxia telangiectagia mutated gene (ATM). ATM plays a crucial role for responding to DNA damages by extrinsic and intrinsic factors, and is a master regulator for maintaining DNA integrity. VDJ recombination and class switch recombination during lymphocyte maturation are the steps of intrinsic DNA damage response where ATM stabilizes DNA ends during recombination. ATM deficiency (ATM−/−) is known to predispose to T-cell lymphopenia and T-lineage lymphoma development. ATM−/− mouse has been shown to have a failure of T-cell development at the stage from double positive (DP) to single positive (SP) differentiation, which is due to a failure of T-cell receptor a (TCRa) recombination. Thymic lymphomas in ATM−/− mice have recently been shown to have a chromosome 14 translocation involving TCRd locus, suggesting that the first event for translocation arises during TCRd locus recombination at double negative (DN) stage. However, phenotypic features of T-cell development at DN phase and the timing of chromosome 14 translocation formation in ATM−/− are not fully elucidated. Here we demonstrate that T cells of ATM−/− mice show a failure at the transition from DN3a to DN3b at b and gd-selection checkpoints due to multiple TCR recombination failure in-vivo. Consistent with in-vivo developmental profiles of ATM−/− mice thymocytes, long term hematopoietic stem cells (LTR-HSCs) of ATM−/− mice cultured with OP9-DLL1 show a delay at b-selection checkpoint in chronological order. In this culture system, failures in gd-T-cell development are also observed in ATM−/− LTR-HSCs. Involvement of thymic stromas in the failure of this transition was ruled out by bone-marrow transplantation (BMT) of ATM−/− donor to WT recipient mice, where thymocytes reconstitution showed the same transition failure at b-selection checkpoint. Thymocytes in RAG2−/− mice are arrested at DN3 stage by a failure of cleavage of TCR genes, but the arrested thymocytes are known to progress to DP phase by anti-CD3e antibody stimulation. This experiment enables to analyze pre-TCR dependent differentiation signal machinery. Then anti-CD3e antibody was injected into RAG2−/−ATM−/− mouse and DN3 cells were shown to be led to DP phase, indicating that ATM itself is not involved in the differentiation program during DN to DP phase. These results suggested loss of ATM attenuates T cell differentiation at DN3a to DN3b transition due to inefficient TCRg, d and b locus recombination. Thus differentiation failure from DN3a to DN3b in ATM deficiency is presumably the primary cause of T cell lymphopenia at the stage prior to positive-selection. We next investigated when of the differentiation stages chromosome 14 translocation involving TCRa/d locus monitored. When the LTR-HSCs is cultured on the OP9-DLL1 cells with high-dose cytokine including 10 ng/ml of Flt3-L, IL-7 and SCF, differentiation of LTR-HSCs to T cells halt at DN2-3a phase before b-selection. Then, by reducing the Flt3-L and IL7 to 5 ng/ml and 1 ng/ml, respectively, the differentiation arrest is released and Tcell differentiation progresses from DN3a to DN3b. No detectable chromosome break at TCRad locus was observed at DN2-3a in wild type, while 5% of ATM−/− cells carried TCRad break, associated with chromosome 14 translocation in approximately 0.8 % of DN2-3a cells. After progression to DN3b-4 phase, TCRad locus break was still observed in AT cells at the frequency of 1%, and chromosome 14 translocations involving TCRad locus was observed in 12% of ATM−/− cells, which was in contrast to none in wild type cell. Mono- or bi-allelic TCRa/d breaks, chromosome 14 dicentric, and t (12:14) were also observed in minor population of ATM−/− cells. These results suggest that critical point for generation of chromosome 14 translocations involving TCRa/d locus lies at DN2-3a to 3b stages corresponding during b and gd selection checkpoint in ATM deficient thymocytes. Our findings revealed that developmental failure of T-cells in AT arises during b and gd–selection checkpoint, which leads to the breaks of TCRa/d locus and subsequent chromosome 14 translocation formation. Thus we propose T-lymphopenia and predisposition to T cell leukemia/lymphoma are tightly connected in ATM deficient condition. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2980-2980
Author(s):  
Christian Reimann ◽  
Liliane Liliane Dal-Cortivo ◽  
Emmanuelle M. Six ◽  
Andrea Schiavo ◽  
Marina Cavazzana-Calvo ◽  
...  

Abstract Abstract 2980 Notchligand-based culture systems such as OP9-DL1 cells induce HSC to engage towards the T-cell developmental program and allow generation of T-lymphoid progenitors in vitro. In vitro generated murine T-lymphoid progenitors accelerated T-cell reconstitution in vivo. In consistency, human T-lymphoid progenitors generated in co-culture with OP9-DL1 cells enhanced thymic repopulation when injected into NOD/SCID/gc−/− mice (NSG). However, positive effects of human T-lymphoid progenitors on peripheral T-cell reconstitution have not been reported yet. Besides, Notchligand-based culture systems, consisting of genetically modified murine cells might raise safety concern for clinical use. It has been described that exposure of CD34+ cells to immobilized DL4 induces the T-cell developmental program even in absence of stromal cell support. Recently, we have made use of this system to generate T-lymphoid progenitors in vitro. In the present study we have further characterized their T-lymphoid potential in vitro and in vivo. Exposure of human CB-derived CD34+ cells to immobilized DL4 allowed generation of CD34+CD7+ and CD34−CD7++CD5+ progenitors displaying a similar phenotype as early thymic progenitors (ETP) and the prethymocytes (pre-T). Within the DL-4 derived ETP- and preT-like progenitors we observed subsequent up regulation of genes involved in T-cell development and silencing of genes implied in B-cell and myeloid differentiation. T-cell commitment of DL-4 progenitors could be further confirmed by early and intermediate rearrangement events within the TCR d/g/b genes. The pattern of gene expression profile and TCR-rearrangement events displayed a pattern similar to what we observed in corresponding intrathymic developmental stages. DL4-progenitors obtained after 7 days of culture displayed a 30-fold increased in vitro T-lymphoid potential as compared to untreated CD34+ CB progenitors. DL4 ETP-like and preT-like progenitors further completed T-cell differentiation in vitro (in OP9DL1 co-culture) faster than native CD34+ CB progenitors. When transferred into NSG, DL4 progenitors obtained after 7 days of culture were able to repopulate the recipients' thymus and to give rise to mature, polyclonal intrathymic and peripheral T-cells. Two months after transfer recipients of DL4 progenitors displayed advanced intrathymic T-cell development as compared to recipients of CD34+ CB cells. Furthermore, peripheral T-cells could be observed in a number of DL-4 progenitor recipients but not in control mice. Our experiments provide further evidence that DL4 allows in vitro induction of T-cell development and generation of early T-lymphoid progenitors in a system devoid of stromal cell support. These progenitors feature phenotypical and molecular characteristics of immature thymic developmental stages. Moreover, they are able to accelerate T-cell development in vitro and when transferred into NSG. This work provides further evidence of the ability of in vitro -generated human T-cell progenitors to accelerate T-cell reconstitution and simultaneously introduces a culture technique that could be rapidly transferred into a clinical setting. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document