scholarly journals Functional Involvement of E-Cadherin in TGF-β1-Induced Cell Cluster Formation of In Vitro Developing Human Langerhans-Type Dendritic Cells

2000 ◽  
Vol 165 (3) ◽  
pp. 1381-1386 ◽  
Author(s):  
Elisabeth Riedl ◽  
Johannes Stöckl ◽  
Otto Majdic ◽  
Clemens Scheinecker ◽  
Klemens Rappersberger ◽  
...  
Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4276-4284 ◽  
Author(s):  
Elisabeth Riedl ◽  
Johannes Stöckl ◽  
Otto Majdic ◽  
Clemens Scheinecker ◽  
Walter Knapp ◽  
...  

Abstract Epithelial tissues of various organs contain immature Langerhans cell (LC)-type dendritic cells, which play key roles in immunity. LCs reside for long time periods at an immature stage in epithelia before migrating to T-cell–rich areas of regional lymph nodes to become mature interdigitating dendritic cells (DCs). LCs express the epithelial adhesion molecule E-cadherin and undergo homophilic E-cadherin adhesion with surrounding epithelial cells. Using a defined serum-free differentiation model of human CD34+hematopoietic progenitor cells, it was demonstrated that LCs generated in vitro in the presence of transforming growth factor β1 (TGF-β1) express high levels of E-cadherin and form large homotypic cell clusters. Homotypic LC clustering can be inhibited by the addition of anti–E- cadherin monoclonal antibodies (mAbs). Loss of E-cadherin adhesion of LCs by mechanical cluster disaggregation correlates with the rapid up-regulation of CD86, neo-expression of CD83, and diminished CD1a cell surface expression by LCs—specific phenotypic features of mature DCs. Antibody ligation of E-cadherin on the surfaces of immature LCs after mechanical cluster disruption strongly reduces the percentages of mature DCs. The addition of mAbs to the adhesion molecules LFA-1 or CD31 to parallel cultures similarly inhibits homotypic LC cluster formation, but, in contrast to anti–E-cadherin, these mAbs fail to inhibit DC maturation. Thus, E-cadherin engagement on immature LCs specifically inhibits the acquisition of mature DC features. E-cadherin–mediated LC maturation suppression may represent a constitutive active epithelial mechanism that prevents the uncontrolled maturation of immature LCs.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4276-4284 ◽  
Author(s):  
Elisabeth Riedl ◽  
Johannes Stöckl ◽  
Otto Majdic ◽  
Clemens Scheinecker ◽  
Walter Knapp ◽  
...  

Epithelial tissues of various organs contain immature Langerhans cell (LC)-type dendritic cells, which play key roles in immunity. LCs reside for long time periods at an immature stage in epithelia before migrating to T-cell–rich areas of regional lymph nodes to become mature interdigitating dendritic cells (DCs). LCs express the epithelial adhesion molecule E-cadherin and undergo homophilic E-cadherin adhesion with surrounding epithelial cells. Using a defined serum-free differentiation model of human CD34+hematopoietic progenitor cells, it was demonstrated that LCs generated in vitro in the presence of transforming growth factor β1 (TGF-β1) express high levels of E-cadherin and form large homotypic cell clusters. Homotypic LC clustering can be inhibited by the addition of anti–E- cadherin monoclonal antibodies (mAbs). Loss of E-cadherin adhesion of LCs by mechanical cluster disaggregation correlates with the rapid up-regulation of CD86, neo-expression of CD83, and diminished CD1a cell surface expression by LCs—specific phenotypic features of mature DCs. Antibody ligation of E-cadherin on the surfaces of immature LCs after mechanical cluster disruption strongly reduces the percentages of mature DCs. The addition of mAbs to the adhesion molecules LFA-1 or CD31 to parallel cultures similarly inhibits homotypic LC cluster formation, but, in contrast to anti–E-cadherin, these mAbs fail to inhibit DC maturation. Thus, E-cadherin engagement on immature LCs specifically inhibits the acquisition of mature DC features. E-cadherin–mediated LC maturation suppression may represent a constitutive active epithelial mechanism that prevents the uncontrolled maturation of immature LCs.


Neuroreport ◽  
2002 ◽  
Vol 13 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Ling-Yun Xu ◽  
Jian-She Yang ◽  
Hans Link ◽  
Bao-Guo Xiao
Keyword(s):  
T Cells ◽  

2010 ◽  
Vol 10 (8) ◽  
pp. 1774-1784 ◽  
Author(s):  
K. L. Pothoven ◽  
T. Kheradmand ◽  
Q. Yang ◽  
J. L. Houlihan ◽  
H. Zhang ◽  
...  

Author(s):  
Lin Chen ◽  
Azeem Alam ◽  
Aurelie Pac-Soo ◽  
Qian Chen ◽  
You Shang ◽  
...  

AbstractEpithelial–mesenchymal transition (EMT) plays a crucial role in the development of pulmonary fibrosis. This study aims to investigate the effects of valproic acid (VPA) on EMT in vitro and in vivo. In vitro, EMT was induced by the administration of transforming growth factor-β1 (TGF-β1) in a human alveolar epithelial cell line (A549). The dose effects of VPA (0.1–3 mM) on EMT were subsequently evaluated at different timepoints. VPA (1 mM) was applied prior to the administration of TGF-β1 and the expression of E-cadherin, vimentin, p-Smad2/3 and p-Akt was assessed. In addition, the effects of a TGF-β type I receptor inhibitor (A8301) and PI3K-Akt inhibitor (LY294002) on EMT were evaluated. In vivo, the effects of VPA on bleomycin-induced lung fibrosis were evaluated by assessing variables such as survival rate, body weight and histopathological changes, whilst the expression of E-cadherin and vimentin in lung tissue was also evaluated. A8301 and LY294002 were used to ascertain the cellular signaling pathways involved in this model. The administration of VPA prior to TGF-β1 in A549 cells prevented EMT in both a time- and concentration-dependent manner. Pretreatment with VPA downregulated the expression of both p-Smad2/3 and p-Akt. A8301 administration increased the expression of E-cadherin and reduced the expression of vimentin. LY294002 inhibited Akt phosphorylation induced by TGF-β1 but failed to prevent EMT. Pretreatment with VPA both increased the survival rate and prevented the loss of body weight in mice with pulmonary fibrosis. Interestingly, both VPA and A8301 prevented EMT and facilitated an improvement in lung structure. Overall, pretreatment with VPA attenuated the development of pulmonary fibrosis by inhibiting EMT in mice, which was associated with Smad2/3 deactivation but without Akt cellular signal involvement.


2021 ◽  
pp. 096032712110387
Author(s):  
Huali Zhang ◽  
Jiaming Xing ◽  
Lingwei Zhao

Objective TGF-β1-induced excessive deposition of extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) process of tubular epithelial cells play critical roles in the progression of renal fibrosis. We are aimed to explore the effects of lysine-specific demethylase 1 (LSD1) in TGF-β1-treated HK-2 cells and in rats with unilateral ureteral obstruction (UUO), and to investigate the underlying molecular mechanism. Methods TGF-β1-treated HK-2 cells and UUO-treated rats were used to establish the model of renal fibrosis in vitro and in vivo, respectively. Protein expression of LSD1, E-cadherin, a-smooth muscle actin (a-SMA), Vimentin, Jagged-1, Notch-1 and Notch-2 were detected by Western blot. The concentrations of type I collagen (Col-I) and Fibronectin (FN) were measured by ELISA. Transwell assay were used to assess cell invasion. Results LSD1 was dramatically increased in TGF-β1-stimulated HK-2 cells. Knockdown of LSD1 decreased the TGF-β1-induced secretion of Col-I and FN, and suppressed TGF-β1-induced expression of E-cadherin,α-SMA and Vimentin, while suppressed cell invasion. Consistent with the in vitro data, the severe histopathological damage, collagen deposition and reduced E-cadherin, increased α-SMA induced by UUO was abated by the knockdown of LSD1 in vivo. Moreover, knockdown of LSD1 suppressed TGF-β1-induced expression of Jagged-1, Notch-1 and Notch-2. Furthermore, we found that inhibition of Notch signaling by a γ-secretase inhibitor RO4929097 almost recapitulated the effects of LSD1 knockdown in TGF-β1-induced HK-2 cells, and at least in part reversed the effects of LSD1 overexpression on EMT and ECM deposition in HK-2 cells. Conclusions Taken together, LSD1 significantly impact on the progression of TGF-β1-mediated EMT and ECM deposition in HK-2 cells, and it may represent novel target for the prevention strategies of renal fibrosis.


Blood ◽  
2011 ◽  
Vol 117 (15) ◽  
pp. 3983-3995 ◽  
Author(s):  
Maria Ida Bonetti ◽  
Laura Pieri ◽  
Lola Domenici ◽  
Serena Urbani ◽  
Giovanni Romano ◽  
...  

Abstract CD133 is a hallmark of primitive myeloid progenitors. We have addressed whether human cord blood cells selected for CD133 can generate dendritic cells, and Langerhans cells in particular, in conditions that promote that generation from CD34+ progenitors. Transforming growth factor-β1 (TGF-β1) and anti–TGF-β1 antibody, respectively, were added in some experiments. With TGF-β, monocytoid cells were recognized after 7 days. Immunophenotypically immature dendritic cells were present at day 14. After 4 more days, the cells expressed CD54, CD80, CD83, and CD86 and were potent stimulators in mixed lymphocyte reaction; part of the cells expressed CD1a and langerin, but not Birbeck granules. Without TGF-β, only a small fraction of cells acquired a dendritic shape and expressed the maturation-related antigens, and lymphocytes were poorly stimulated. With anti–TGF-β, the cell growth was greatly hampered, CD54 and langerin were never expressed, and lymphocytes were stimulated weakly. In conclusion, CD133+ progenitors can give rise in vitro, through definite steps, to mature, immunostimulatory dendritic cells with molecular features of Langerhans cells, although without Birbeck granules. Addition of TGF-β1 helps to stimulate cell growth and promotes the acquisition of mature immunophenotypical and functional features. Neither langerin nor Birbeck granules proved indispensable for lymphocyte stimulation.


Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1425-1434 ◽  
Author(s):  
Herbert Strobl ◽  
Concha Bello-Fernandez ◽  
Elisabeth Riedl ◽  
Winfried F. Pickl ◽  
Otto Majdic ◽  
...  

Using a recently described serum-free culture system of purified human CD34+ progenitor cells, we show here a critical cooperation of flt3 ligand (FL) with transforming growth factor-β1 (TGF-β1) in the induction of in vitro dendritic cell/Langerhans cell (DC/LC) development. The addition of FL to serum-free cultures of CD34+ cells supplemented with TGF-β1, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor α, and stem cell factor strongly increases both percentages (mean, 36% ± 5% v 64% ± 4%; P = .001) and total numbers (4.4- ± 0.8-fold) of CD1a+ dendritic cells. These in vitro-generated CD1a+ cells molecularly closely resemble a particular type of DC known as an epidermal Langerhans cell. Generation of DC under serum-free conditions was found to strictly require supplementation of culture medium with TGF-β1. Upon omission of TGF-β1, percentages of CD1a+ DC decreased (to mean, 10% ± 8%; P = .001) and, in turn, percentages of granulomonocytic cells (CD1a− cells that are lysozyme [LZ+]; myeloperoxidase [MPO+]; CD14+) increased approximately threefold (P < .05). Furthermore, in the absence of TGF-β1, FL consistently promotes generation of LZ+, MPO+, and CD14+ cells, but not of CD1a+ cells. Serum-free single-cell cultures set up under identical TGF-β1– and FL-supplemented culture conditions showed that high percentages of CD34+ cells (mean, 18% ± 2%; n = 4) give rise to day-10 DC colony formation. The majority of cells in these DC-containing colonies expressed the Langerhans cell/Birbeck granule specific marker molecule Lag. Without TGF-β1 supplementation, Lag+ colony formation is minimal and formation of monocyte/macrophage-containing colonies predominates. Total cloning efficiency in the absence and presence of TGF-β1 is virtually identical (mean, 41% ± 6% v 41% ± 4%). Thus, FL has the potential to strongly stimulate DC/LC generation, but has a strict requirement for TGF-β1 to show this costimulatory effect.


Sign in / Sign up

Export Citation Format

Share Document