scholarly journals The Potent Adjuvant Activity of Archaeosomes Correlates to the Recruitment and Activation of Macrophages and Dendritic Cells In Vivo

2001 ◽  
Vol 166 (3) ◽  
pp. 1885-1893 ◽  
Author(s):  
Lakshmi Krishnan ◽  
Subash Sad ◽  
Girishchandra B. Patel ◽  
G. Dennis Sprott
2008 ◽  
Vol 84 (1) ◽  
pp. 199-206 ◽  
Author(s):  
Barbara Valentinis ◽  
Annalisa Capobianco ◽  
Francesca Esposito ◽  
Alessandro Bianchi ◽  
Patrizia Rovere-Querini ◽  
...  

2004 ◽  
Vol 72 (9) ◽  
pp. 5235-5246 ◽  
Author(s):  
G. Dennis Sprott ◽  
Chantal J. Dicaire ◽  
Komal Gurnani ◽  
Subash Sad ◽  
Lakshmi Krishnan

ABSTRACT Liposome vesicles could be formed at 65°C from the chloroform-soluble, total polar lipids (TPL) extracted from Mycobacterium bovis bacillus Calmette-Guérin (BCG). Mice immunized with ovalbumin (OVA) entrapped in TPL liposomes produced both anti-OVA antibody and cytotoxic T lymphocyte responses. Murine bone marrow-derived dendritic cells were activated to secrete interleukin-6 (IL-6), IL-12, and tumor necrosis factor upon exposure to antigen-free TPL liposomes. Three phosphoglycolipids and three phospholipids comprising 96% of TPL were identified as phosphatidylinositol dimannoside, palmitoyl-phosphatidylinositol dimannoside, dipalmitoyl-phosphatidylinositol dimannoside, phosphatidylinositol, phosphatidylethanolamine, and cardiolipin. The activation of dendritic cells by liposomes prepared from each purified lipid component of TPL was evaluated in vitro. A basal activity of phosphatidylinositol liposomes to activate proinflammatory cytokine production appeared to be attributable to the tuberculosteric fatty acyl 19:0 chain characteristic of mycobacterial glycerolipids, as similar lipids lacking tuberculosteric chains showed little activity. Phosphatidylinositol dimannoside was identified as the primary lipid that activated dendritic cells to produce amounts of proinflammatory cytokines several times higher than the basal level, indicating the importance of mannose residues. Although the activity of phosphatidylinositol dimannoside was little influenced by palmitoylation of mannose at C-6, a further palmitoylation at inositol C-3 diminished the induction levels of IL-6 and IL-12. Further, OVA entrapped in palmitoyl-phosphatidylinositol dimannoside liposomes was delivered to dendritic cells for major histocompatibility complex class I presentation more effectively than TPL OVA-liposomes. BCG liposomes containing mannose lipids caused up-regulation of costimulatory molecules and CD40. Thus, the inclusion of pure phosphatidylinositol mannosides of BCG in lipid vesicle vaccines represents a simple and efficient option for targeting antigen delivery and providing immune stimulation.


2005 ◽  
Vol 73 (10) ◽  
pp. 6763-6770 ◽  
Author(s):  
Oscar Pino ◽  
Michael Martin ◽  
Suzanne M. Michalek

ABSTRACT An expanding area of interest is the utilization of microbe-based components to augment mucosal and systemic immune responses to target antigens. Thus, the aim of the present study was to assess if the flagellin component FljB from Salmonella enterica serovar Typhimurium could act as a mucosal adjuvant and then to determine the cellular mechanism(s) by which FljB mediates its adjuvant properties. To determine if FljB could act as a mucosal adjuvant, mice were immunized by the intranasal (i.n.) route with antigen alone or in conjunction with FljB. Additionally, we assessed how FljB affected the levels of the costimulatory molecules B7-1 and B7-2 on dendritic cells by flow cytometry and determined the functional role these costimulatory molecules played in the adjuvant properties of FljB in vivo. Mice immunized by the i.n. route with antigen and FljB exhibited significantly elevated levels of mucosal and systemic antibody and CD4+-T-cell responses compared to mice given antigen only. Stimulation of dendritic cells in vitro with FljB resulted in a pronounced increase in the surface expression of B7-1 and B7-2. The percentage of dendritic cells expressing B7-2 but not B7-1 increased significantly when stimulated with FljB over a concentration range of 10 to 10,000 ng/ml. Immunization of wild-type and B7-1, B7-2, and B7-1/2 knockout mice by the i.n. route revealed that the ability of FljB to increase B7-2 expression is largely responsible for its adjuvant effect in vivo. These findings demonstrate that FljB can act as an effective mucosal adjuvant and that its ability to enhance the level of B7-2 expression is predominantly responsible for its adjuvant properties.


2001 ◽  
Vol 86 (11) ◽  
pp. 1257-1263 ◽  
Author(s):  
Attilio Bondanza ◽  
Angelo Manfredi ◽  
Valérie Zimmermann ◽  
Matteo Iannacone ◽  
Angela Tincani ◽  
...  

SummaryScavenger phagocytes are mostly responsible for the in vivo clearance of activated or senescent platelets. In contrast to other particulate substrates, the phagocytosis of platelets does not incite pro-inflammatory responses in vivo. This study assessed the contribution of macrophages and dendritic cells (DCs) to the clearance of activated platelets. Furthermore, we verified whether antibodies against the β2 Glycoprotein I (β2GPI), which bind to activated platelets, influence the phenomenon. DCs did not per se internalise activated platelets. In contrast, macrophages efficiently phagocytosed platelets. In agreement with the uneventful nature of the clearance of platelets in vivo, phagocytosing macrophages did not release IL-1β, TNF-α or IL-10. β2GPI bound to activated platelets and was required for their recognition by anti-ββ2GPI antibodies. DCs internalised platelets opsonised by anti-ββ2GPI antibodies. The phagocytosis of opsonised platelets determined the release of TNF-α and IL-1β by DCs and macrophages. Phagocytosing macrophages, but not DCs, secreted the antiinflammatory cytokine IL-1β0. We conclude that anti-ββ2GPI antibodies cause inflammation during platelet clearance and shuttle platelet antigens to antigen presenting DCs.


Sign in / Sign up

Export Citation Format

Share Document