scholarly journals α2β1 Integrin Is Required for Optimal NK Cell Proliferation during Viral Infection but Not for Acquisition of Effector Functions or NK Cell–Mediated Virus Control

2020 ◽  
Vol 204 (6) ◽  
pp. 1582-1591 ◽  
Author(s):  
Colby Stotesbury ◽  
Pedro Alves-Peixoto ◽  
Brian Montoya ◽  
Maria Ferez ◽  
Savita Nair ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica M. Sierra ◽  
Florencia Secchiari ◽  
Sol Y. Nuñez ◽  
Ximena L. Raffo Iraolagoitia ◽  
Andrea Ziblat ◽  
...  

Natural Killer (NK) cells play a key role in cancer immunosurveillance. However, NK cells from cancer patients display an altered phenotype and impaired effector functions. In addition, evidence of a regulatory role for NK cells is emerging in diverse models of viral infection, transplantation, and autoimmunity. Here, we analyzed clear cell renal cell carcinoma (ccRCC) datasets from The Cancer Genome Atlas (TCGA) and observed that a higher expression of NK cell signature genes is associated with reduced survival. Analysis of fresh tumor samples from ccRCC patients unraveled the presence of a high frequency of tumor-infiltrating PD-L1+ NK cells, suggesting that these NK cells might exhibit immunoregulatory functions. In vitro, PD-L1 expression was induced on NK cells from healthy donors (HD) upon direct tumor cell recognition through NKG2D and was further up-regulated by monocyte-derived IL-18. Moreover, in vitro generated PD-L1hi NK cells displayed an activated phenotype and enhanced effector functions compared to PD-L1- NK cells, but simultaneously, they directly inhibited CD8+ T cell proliferation in a PD-L1-dependent manner. Our results suggest that tumors might drive the development of PD-L1-expressing NK cells that acquire immunoregulatory functions in humans. Hence, rational manipulation of these regulatory cells emerges as a possibility that may lead to improved anti-tumor immunity in cancer patients.


2020 ◽  
Vol 21 (17) ◽  
pp. 6351 ◽  
Author(s):  
Charmaine van Eeden ◽  
Lamia Khan ◽  
Mohammed S. Osman ◽  
Jan Willem Cohen Tervaert

When facing an acute viral infection, our immune systems need to function with finite precision to enable the elimination of the pathogen, whilst protecting our bodies from immune-related damage. In many instances however this “perfect balance” is not achieved, factors such as ageing, cancer, autoimmunity and cardiovascular disease all skew the immune response which is then further distorted by viral infection. In SARS-CoV-2, although the vast majority of COVID-19 cases are mild, as of 24 August 2020, over 800,000 people have died, many from the severe inflammatory cytokine release resulting in extreme clinical manifestations such as acute respiratory distress syndrome (ARDS) and hemophagocytic lymphohistiocytosis (HLH). Severe complications are more common in elderly patients and patients with cardiovascular diseases. Natural killer (NK) cells play a critical role in modulating the immune response and in both of these patient groups, NK cell effector functions are blunted. Preliminary studies in COVID-19 patients with severe disease suggests a reduction in NK cell number and function, resulting in decreased clearance of infected and activated cells, and unchecked elevation of tissue-damaging inflammation markers. SARS-CoV-2 infection skews the immune response towards an overwhelmingly inflammatory phenotype. Restoration of NK cell effector functions has the potential to correct the delicate immune balance required to effectively overcome SARS-CoV-2 infection.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A892-A892
Author(s):  
Olivier Demaria ◽  
Eric Vivier ◽  
Marie Vetizou ◽  
Audrey Blanchard Alvarez ◽  
Guillaume Habif ◽  
...  

BackgroundMost immunomodulatory approaches have focused on enhancing T-cell responses, with immune checkpoint inhibitors, chimeric antigen receptor T cells or bispecific antibodies. Although these therapies have led to exceptional successes, only a minority of cancer patients benefit from these treatments, highlighting the need to identify new cells and molecules that could be exploited in the next generation of immunotherapy. Given the crucial role of innate immune responses in immunity, harnessing these responses opens up new possibilities for tumor control. Antibody engineering provides us with great opportunities to induce synthetic immunity and to optimize the biological functions of innate immune cells, in particular by boosting the capacity of Natural Killer (NK) cells to kill tumor cells directly and to stimulate T-cell responses indirectly.MethodsIn order to leverage the advantages of harnessing NK cell effector functions, we used our Antibody-based NK cell Engager Therapeutics (ANKET) molecular platform1 and designed a new generation of molecules that can engage activating receptors NKp46 and CD16, the IL-2Rβ chain and a tumor antigen in a single tetra-specific molecule (ANKET4). The variant of interleukin-2 (IL-2v) integrated in the ANKET4 molecule is unable to bind the α-subunit of its receptor to limit regulatory T cell activation and IL-2Rα-mediated toxicity.ResultsIn vitro, ANKET4 provides proliferation and activation signals targeted to NK cells and induces primary human NK cell cytolytic activity and the secretion of cytokines and chemokines only after binding to the tumor target. In mouse models of both invasive and solid tumors, ANKET4 induced NK cell proliferation and accumulation at the tumor bed, and had a higher anti-tumor efficacy than approved therapeutic antibodies targeting the same tumor antigen. Mechanistically, transcriptomic analysis and in-vivo studies revealed that the geometry of the ANKET4 molecule including NKp46, CD16 and IL-2 receptor binding moieties on the same molecule was essential for its strong activity which results from a synthetic cooperativity between immunoreceptor tyrosine-based activation motif (ITAM) and cytokine signaling pathways. In non-human primates, CD20-directed ANKET4 resulted in sustained CD20+ B-cell depletion with minimal systemic cytokine release and no clinical sign of toxicity.ConclusionsTetra-specific ANKET4 thus constitutes a technological platform combining the induction of NK cell proliferation and effector functions with a manageable safety profile, supporting its clinical development for next-generation cancer immunotherapies.ReferenceGauthier L, Morel A, Anceriz N, Rossi B, Blanchard-Alvarez A, Grondin G, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019;177(7):1701–13 e16.Ethics ApprovalPrimary immune cells were purified from buffy coats from healthy donors obtained from Etablissement Francais du Sang (EFS, Marseille) with written consent from each volunteer.All mouse experiments were performed in accordance with the rules of the Innate Pharma ethics committee and were approved by the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation – France (APAFIS# 19272 ).All non human-primate procedures were conducted according to European guidelines for animal care and use for scientific purposes (Directive 63-2010, ”Journal Officiel des Communautés Européennes”, L276, September 22, 2010) and according to CEA institutional guidelines. The study was approved by the local ethical committee under the number A18_080 and by the French Administration (APAFIS#20525-2019050616506478 v1)


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1606
Author(s):  
Peter Seiringer ◽  
Stefanie Eyerich ◽  
Kilian Eyerich ◽  
Daniela Dittlein ◽  
Anna Caroline Pilz ◽  
...  

Whilst the importance of keratinocytes as a first-line defense has been widely investigated, little is known about their interactions with non-resident immune cells. In this study, the impact of human keratinocytes on T cell effector functions was analyzed in an antigen-specific in vitro model of allergic contact dermatitis (ACD) to nickel sulfate. Keratinocytes partially inhibited T cell proliferation and cytokine production. This effect was dependent on the keratinocyte/T cell ratio and was partially reversible by increasing the number of autologous dendritic cells. The inhibition of T cell proliferation by keratinocytes was independent of the T cell subtype and antigen presentation by different professional antigen-presenting cells. Autologous and heterologous keratinocytes showed comparable effects, while the fixation of keratinocytes with paraformaldehyde abrogated the immunosuppressive effect. The separation of keratinocytes and T cells by a transwell chamber, as well as a cell-free keratinocyte supernatant, inhibited T cell effector functions to the same amount as directly co-cultured keratinocytes, thus proving that soluble factor/s account for the observed suppressive effects. In conclusion, keratinocytes critically control the threshold of inflammatory processes in the skin by inhibiting T cell proliferation and cytokine production.


Cancers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Marisa Market ◽  
Katherine Baxter ◽  
Leonard Angka ◽  
Michael Kennedy ◽  
Rebecca Auer

Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.


2019 ◽  
Vol 70 (3) ◽  
pp. 351-360 ◽  
Author(s):  
Anita Schuch ◽  
Britta Franziska Zecher ◽  
Philipp Andreas Müller ◽  
Margareta P. Correia ◽  
Franziska Daul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document