AIM2 Suppresses Inflammation and Epithelial Cell Proliferation during Glomerulonephritis

2021 ◽  
pp. ji2100483
Author(s):  
Hyunjae Chung ◽  
Takanori Komada ◽  
Arthur Lau ◽  
Mona Chappellaz ◽  
Jaye M. Platnich ◽  
...  
2015 ◽  
Vol 226 (3) ◽  
pp. 135-143 ◽  
Author(s):  
Tatiana Dorfman ◽  
Yulia Pollak ◽  
Rima Sohotnik ◽  
Arnold G Coran ◽  
Jacob Bejar ◽  
...  

The Wnt/β-catenin signaling cascade is implicated in the control of stem cell activity, cell proliferation, and cell survival of the gastrointestinal epithelium. Recent evidence indicates that the Wnt/β-catenin pathway is activated under diabetic conditions. The purpose of this study was to evaluate the role of Wnt/β-catenin signaling during diabetes-induced enteropathy in a rat model. Male rats were divided into three groups: control rats received injections of vehicle; diabetic rats received injections of one dose of streptozotocin (STZ); and diabetic–insulin rats received injections of STZ and were treated with insulin given subcutaneously at a dose of 1 U/kg twice daily. Rats were killed on day 7. Wnt/β-catenin-related genes and expression of proteins was determined using real-time PCR, western blotting, and immunohistochemistry. Among 13 genes identified by real-time PCR, seven genes were upregulated in diabetic rats compared with control animals including the target genes c-Myc and Tcf4. Diabetic rats also showed a significant increase in β-catenin protein compared with control animals. Treatment of diabetic rats attenuated the stimulating effect of diabetes on intestinal cell proliferation and Wnt/β-catenin signaling. In conclusion, enhanced intestinal epithelial cell proliferation in diabetic rats correlates with β-catenin accumulation.


2008 ◽  
Vol 8 (1) ◽  
pp. 94 ◽  
Author(s):  
Holly E Barker ◽  
Gordon K Smyth ◽  
James Wettenhall ◽  
Teresa A Ward ◽  
Mary L Bath ◽  
...  

2011 ◽  
Vol 301 (2) ◽  
pp. C522-C529 ◽  
Author(s):  
Justine Elliott ◽  
Nadezhda N. Zheleznova ◽  
Patricia D. Wilson

c-Src is a non-receptor tyrosine kinase whose activity is induced by phosphorylation at Y418 and translocation from the cytoplasm to the cell membrane. Increased activity of c-Src has been associated with cell proliferation, matrix adhesion, motility, and apoptosis in tumors. Immunohistochemistry suggested that activated (pY418)-Src activity is increased in cyst-lining autosomal dominant polycystic kidney disease (ADPKD) epithelial cells in human and mouse ADPKD. Western blot analysis showed that SKI-606 (Wyeth) is a specific inhibitor of pY418-Src without demonstrable effects on epidermal growth factor receptor or ErbB2 activity in renal epithelia. In vitro studies on mouse inner medullary collecting duct (mIMCD) cells and human ADPKD cyst-lining epithelial cells showed that SKI-606 inhibited epithelial cell proliferation over a 24-h time frame. In addition, SKI-606 treatment caused a striking statistically significant decrease in adhesion of mIMCD and human ADPKD to extracellular collagen matrix. Retained viability of unattached cells was consistent with a primary effect on epithelial cell anchorage dependence mediated by the loss of extracellular matrix (ECM)-attachment due to α2β1-integrin function. SKI-606-mediated attenuation of the human ADPKD hyperproliferative and hyper-ECM-adhesive epithelial cell phenotype in vitro was paralleled by retardation of the renal cystic phenotype of Pkd1 orthologous ADPKD heterozygous mice in vivo. This suggests that SKI-606 has dual effects on cystic epithelial cell proliferation and ECM adhesion and may have therapeutic potential for ADPKD patients.


1999 ◽  
Vol 80 (10) ◽  
pp. 1550-1557 ◽  
Author(s):  
C Booth ◽  
D F Hargreaves ◽  
J A Hadfield ◽  
A T McGown ◽  
C S Potten

2008 ◽  
Vol 294 (6) ◽  
pp. R1832-R1839 ◽  
Author(s):  
Song Han ◽  
Guiyun Wang ◽  
Xiang Qi ◽  
Heung M. Lee ◽  
Ella W. Englander ◽  
...  

Apelin is the endogenous ligand for the APJ receptor, and apelin and APJ are expressed in the gastrointestinal (GI) tract. Intestinal inflammation increases intestinal hypoxia-inducible factor (HIF) and apelin expression. Hypoxia and inflammation are closely linked cellular insults. The purpose of these studies was to investigate the influence of hypoxia on enteric apelin expression. Exposure of rat pups to acute hypoxia increased hepatic, stomach-duodenal, and colonic apelin mRNA levels 10-, 2-, and 2-fold, respectively ( P < 0.05 vs. controls). Hypoxia also increased colonic APJ mRNA levels, and apelin treatment during hypoxia exposure enhanced colonic APJ mRNA levels further. In vitro hypoxia also increased apelin and APJ mRNA levels. The hypoxia-induced elevation in apelin expression is most likely mediated by HIF, since HIF-activated apelin transcriptional activity is dependent on an intact, putative HIF binding site in the rat apelin promoter. Acute exposure of rat pups to hypoxia lowered gastric and colonic epithelial cell proliferation; hypoxia in combination with apelin treatment increased epithelial proliferation by 50%. In vitro apelin treatment of enteric cells exposed to hypoxia increased cell proliferation. Apelin treatment during normoxia was ineffective. Our studies imply that the elevation in apelin expression during hypoxia and inflammation in the GI tract functions in part to stimulate epithelial cell proliferation.


Pharmacology ◽  
1993 ◽  
Vol 47 (1) ◽  
pp. 187-195 ◽  
Author(s):  
K. Geboes ◽  
G. Nijs ◽  
U. Mengs ◽  
K.P.J. Geboes ◽  
A. Van Damme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document