scholarly journals PRMT5 Deficiency Enforces the Transcriptional and Epigenetic Programs of Klrg1+CD8+ Terminal Effector T Cells and Promotes Cancer Development

2021 ◽  
pp. ji2100523
Author(s):  
Yingxia Zheng ◽  
Zheyi Chen ◽  
Bingqian Zhou ◽  
Shiyu Chen ◽  
Li Han ◽  
...  
Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 323
Author(s):  
Sara Alavi ◽  
Abdullah Al Emran ◽  
Hsin-Yi Tseng ◽  
Jessamy C. Tiffen ◽  
Helen Marie McGuire ◽  
...  

One of the limitations of immunotherapy is the development of a state referred to as T cell exhaustion (TEx) whereby T cells express inhibitory receptors (IRs) and lose production of effectors involved in killing of their targets. In the present studies we have used the repeated stimulation model with anti CD3 and anti CD28 to understand the factors involved in TEx development and treatments that may reduce changes of TEx. The results show that addition of nicotinamide (NAM) involved in energy supply to cells prevented the development of inhibitory receptors (IRs). This was particularly evident for the IRs CD39, TIM3, and to a lesser extent LAG3 and PD1 expression. NAM also prevented the inhibition of IL-2 and TNFα expression in TEx and induced differentiation of CD4+ and CD8 T cells to effector memory and terminal effector T cells. The present results showed that effects of NAM were linked to regulation of reactive oxygen species (ROS) consistent with previous studies implicating ROS in upregulation of TOX transcription factors that induce TEx. These effects of NAM in reducing changes of TEx and in increasing the differentiation of T cells to effector states appears to have important implications for the use of NAM supplements in immunotherapy against cancers and viral infections and require further exploration in vivo.


2004 ◽  
Vol 31 (S 1) ◽  
Author(s):  
A Hug ◽  
J Haas ◽  
A Viehöver ◽  
B Fritz ◽  
B Storch-Hagenlocher ◽  
...  

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Youdong Pan ◽  
Luzheng Liu ◽  
Tian Tian ◽  
Jingxia Zhao ◽  
Chang Ook Park ◽  
...  

AbstractModified Vaccinia Ankara (MVA) was recently approved as a smallpox vaccine. Variola is transmitted by respiratory droplets and MVA immunization by skin scarification (s.s.) protected mice far more effectively against lethal respiratory challenge with vaccinia virus (VACV) than any other route of delivery, and at lower doses. Comparisons of s.s. with intradermal, subcutaneous, or intramuscular routes showed that MVAOVA s.s.-generated T cells were both more abundant and transcriptionally unique. MVAOVA s.s. produced greater numbers of lung Ova-specific CD8+ TRM and was superior in protecting mice against lethal VACVOVA respiratory challenge. Nearly as many lung TRM were generated with MVAOVA s.s. immunization compared to intra-tracheal immunization with MVAOVA and both routes vaccination protected mice against lethal pulmonary challenge with VACVOVA. Strikingly, MVAOVA s.s.-generated effector T cells exhibited overlapping gene transcriptional profiles to those generated via intra-tracheal immunization. Overall, our data suggest that heterologous MVA vectors immunized via s.s. are uniquely well-suited as vaccine vectors for respiratory pathogens, which may be relevant to COVID-19. In addition, MVA delivered via s.s. could represent a more effective dose-sparing smallpox vaccine.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ailu Chen ◽  
Maria P. Diaz-Soto ◽  
Miguel F. Sanmamed ◽  
Taylor Adams ◽  
Jonas C. Schupp ◽  
...  

Abstract Background Asthma has been associated with impaired interferon response. Multiple cell types have been implicated in such response impairment and may be responsible for asthma immunopathology. However, existing models to study the immune response in asthma are limited by bulk profiling of cells. Our objective was to Characterize a model of peripheral blood mononuclear cells (PBMCs) of patients with severe asthma (SA) and its response to the TLR3 agonist Poly I:C using two single-cell methods. Methods Two complementary single-cell methods, DropSeq for single-cell RNA sequencing (scRNA-Seq) and mass cytometry (CyTOF), were used to profile PBMCs of SA patients and healthy controls (HC). Poly I:C-stimulated and unstimulated cells were analyzed in this study. Results PBMCs (n = 9414) from five SA (n = 6099) and three HC (n = 3315) were profiled using scRNA-Seq. Six main cell subsets, namely CD4 + T cells, CD8 + T cells, natural killer (NK) cells, B cells, dendritic cells (DCs), and monocytes, were identified. CD4 + T cells were the main cell type in SA and demonstrated a pro-inflammatory profile characterized by increased JAK1 expression. Following Poly I:C stimulation, PBMCs from SA had a robust induction of interferon pathways compared with HC. CyTOF profiling of Poly I:C stimulated and unstimulated PBMCs (n = 160,000) from the same individuals (SA = 5; HC = 3) demonstrated higher CD8 + and CD8 + effector T cells in SA at baseline, followed by a decrease of CD8 + effector T cells after poly I:C stimulation. Conclusions Single-cell profiling of an in vitro model using PBMCs in patients with SA identified activation of pro-inflammatory pathways at baseline and strong response to Poly I:C, as well as quantitative changes in CD8 + effector cells. Thus, transcriptomic and cell quantitative changes are associated with immune cell heterogeneity in this model to evaluate interferon responses in severe asthma.


Sign in / Sign up

Export Citation Format

Share Document