Unsteady Panel Method Calculation of Pressure Distribution on BO 105 Model Rotor Blades

1998 ◽  
Vol 43 (1) ◽  
pp. 47-56 ◽  
Author(s):  
S. R. Ahmed ◽  
V. T. Vidjaja
1994 ◽  
Vol 116 (2) ◽  
pp. 327-332 ◽  
Author(s):  
T. Green ◽  
A. B. Turner

The upstream wheelspace of an axial air turbine stage complete with nozzle guide vanes (NGVs) and rotor blades (430 mm mean diameter) has been tested with the objective of examining the combined effect of NGVs and rotor blades on the level of mainstream ingestion for different seal flow rates. A simple axial clearance seal was used with the rotor spun up to 6650 rpm by drawing air through it from atmospheric pressure with a large centrifugal compressor. The effect of rotational speed was examined for several constant mainstream flow rates by controlling the rotor speed with an air brake. The circumferential variation in hub static pressure was measured at the trailing edge of the NGVs upstream of the seal gap and was found to affect ingestion significantly. The hub static pressure distribution on the rotor blade leading edges was rotor speed dependent and could not be measured in the experiments. The Denton three-dimensional C.F.D. computer code was used to predict the smoothed time-dependent pressure field for the rotor together with the pressure distribution downstream of the NGVs. The level and distribution of mainstream ingestion, and thus the seal effectiveness, was determined from nitrous oxide gas concentration measurements and related to static pressure measurements made throughout the wheelspace. With the axial clearance rim seal close to the rotor the presence of the blades had a complex effect. Rotor blades in connection with NGVs were found to reduce mainstream ingestion seal flow rates significantly, but a small level of ingestion existed even for very high levels of seal flow rate.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Israa Alesbe ◽  
Moustafa Abdel-Maksoud ◽  
Sattar Aljabair

Analyses of the unsteady flow behaviour of a 5 MW horizontal-axis wind turbine (HAWT) rotor (Case I) and a rotor with tower (Case II) are carried out using a panel method and a RANSE method. The panel method calculations are obtained by applying the in-house boundary element method (BEM) panMARE code, which is based on the potential flow theory. The BEM is a three-dimensional first-order panel method which can be used for investigating various steady and unsteady flow problems. Viscous flow simulations are carried out by using the RANSE solver ANSYS CFX 14.5. The results of Case I allow for the calculation of the global integral values of the torque and the thrust and include detailed information on the local flow field, such as the pressure distribution on the blade sections and the streamlines. The calculated pressure distribution by the BEM is compared with the corresponding values obtained by the RANSE solver. The tower geometry is considered in the simulation in Case II, so the unsteady forces due to the interaction between the tower and the rotor blades can be calculated. The application of viscous and inviscid flow methods to predict the forces on the HAWT allows for the evaluation of the viscous effects on the calculated HAWT flows.


Author(s):  
Krzysztof Kosowski ◽  
Marian Piwowarski

The experimental investigations into the pressure field in the shroud clearance were performed on a one-stage air model turbine of impulse type. Measurements of pressure distribution were carried out for different rotor eccentricities, different values of axial gap and of rotor-stator misalignment, different rotor speeds and different turbine load. The experimental investigations proved that: a) the pressure in the blade tip clearance is not stationary but it pulsates, b) the effect of nozzle trailing edge can be observed in the blade shroud clearance, c) for a given turbine output, the rotor-stator eccentricity and rotor-stator misalignment appear the most important parameters influencing the pressure distribution in the shroud clearance. Aiming to investigate the pressure pulsation transmission through the leakage flow in the blade shroud clearances, pulsations of different amplitudes and frequencies were excited in the turbine inlet duct and corresponding changes of pressure were measured along the shroud width, followed by appropriate harmonic analysis. The investigations were performed for forced pulsations with frequencies ranging from 1Hz to 8 Hz. In all the examined cases, the frequency of pressure pulsations remained unchanged, while the amplitude of the pulsation decreased gradually along the tip clearance. The frequency of these pressure pulsations in the tip clearance was equal to the frequency of the pressure pulsation at the turbine stage inlet and to the frequency of pressure pulsation at the turbine flow passage’s exit.


2014 ◽  
Vol 118 (1201) ◽  
pp. 297-313 ◽  
Author(s):  
J. de Montaudouin ◽  
N. Reveles ◽  
M. J. Smith

Abstract The aerodynamic and aeroelastic behaviour of a rotor become more complex as advance ratios increase to achieve high-speed forward fight. As the rotor blades encounter large regions of cross and reverse flows during each revolution, strong variations in the local Mach regime are encountered, inducing complex elastic blade deformations. In addition, the wake system may remain in the vicinity of the rotor, adding complexity to the blade loading. The aeroelastic behaviour of a model rotor with advance ratios ranging from 0·5 to 2·0 has been evaluated with aerodynamics provided via a computational fluid dynamics (CFD) method. Significant radial blade-vortex interaction can occur at a high advance ratio; the advance ratio at which this occurs is dependent on the rotor configuration. This condition is accompanied by high vibratory loads, peak negative torsion, and peak torsion and in-plane loads. The high vibratory loading increases the sensitivity of the trim model, so that at some high advance ratios the vibratory loads must be filtered to achieve a trimmed state.


2007 ◽  
Vol 53 (8) ◽  
pp. 1399-1422 ◽  
Author(s):  
David J. Willis ◽  
Jaime Peraire ◽  
Jacob K. White

AIAA Journal ◽  
1994 ◽  
Vol 32 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Thomas F. Richason ◽  
Joseph Katz ◽  
Dale L. Ashby

2021 ◽  
Vol 61 (2) ◽  
pp. 378-390
Author(s):  
Pavel Schoř ◽  
Martin Kouřil ◽  
Vladimír Daněk

We present a method for numerical simulations of a maneuvering aircraft, which uses a first-order unsteady panel method as the only source of aerodynamic forces and moments. By using the proposed method, it is possible to simulate a motion of an aircraft, while the only required inputs are geometry and inertia characteristics, which significantly reduces the time required to start the simulation. We validated the method by a comparison of recordings of flight parameters (position, velocities, accelerations) from an actual aerobatic flight of a glider and the results obtained from the simulations. The simulation was controlled by deflections of control surfaces recorded during the actual flight. We found a reasonable agreement between the experimental data and the simulation. The design of our method allows to evaluate not only the integral kinematic quantities but also instant local pressure and inertia loads. This makes our method useful also for a load evaluation of an aircraft. A significant advantage of the proposed method is that only an ordinary workstation computer is requiredto perform the simulation.


Author(s):  
Kunyuan Zhou ◽  
Mike Wilson ◽  
J. Michael Owen ◽  
Gary Lock

Three-dimensional unsteady computational fluid dynamics (CFD) is applied to the ingestion of fluid from a non-uniform mainstream annulus flow via a rim-seal into a rotor-stator wheel-space. The results provide understanding of the complex flow and information for the development of more efficient computational models and analytical ‘orifice models’. The commercial CFD code CFX has been used to carry out unsteady RANS computations with an SST turbulence model. A scalar equation is employed to represent the seeded tracer gas that can be used in experiments to determine sealing effectiveness, and the variation of effectiveness with sealing flow rate is determined for a simple axial clearance seal and one combination of axial and rotational Reynolds numbers. The computational domain comprises one pitch in a row of stator vanes and rotor blades The rotating blade is accounted for by a sliding interface between the stationary and rotating sections of the model, located downstream of the seal clearance. The unsteady computations confirm that the magnitude of the peak-to-trough pressure difference in the annulus is the principal driving mechanism for ingestion (or ingress) into the wheel-space. This pressure difference is used in orifice models to predict sealing effectiveness; its magnitude however depends on the locations in the annulus and the wheel-space that are chosen for its evaluation as well as the sealing flow rate. The CFD is used to investigate the appropriateness of the locations that are often used to determine the pressure difference. It is shown that maximum ingestion occurs when the static pressure peak produced by the vane combines with that produced by the blade, and that highly swirled ingrested flow could contact both the stator and rotor disk when little sealing flow is provided. The relationships between the unsteady simulations and simplified, more computationally efficient steady computations are also investigated. For the system considered here, ingress is found to be dictated principally by the pressure distribution caused by the vane. The effect of the rotating blade on the pressure distribution in the annulus is investigated by comparing the unsteady results with those for steady models that do not involve a blade. It is found that the presence of the blade increases the pressure asymmetry in the annulus. Although the pressure asymmetry predicted by unsteady and steady models have a similar magnitude, the sealing effectiveness is over-predicted considerably for the corresponding steady model. If a “thin seal” geometric approximation is used in the steady model, however, similar effectiveness results compared with the unsteady model may be obtained much more economically.


Author(s):  
T. Green ◽  
A. B. Turner

The upstream wheelspace of an axial air turbine stage complete with nozzle guide vanes (NGV’s) and rotor blades (430 mm mean diameter) has been tested with the objective of examining the combined effect of NGV’s and rotor blades on the level of mainstream ingestion for different seal flow rates. A simple axial clearance seal was used with the rotor spun up to 6650 rpm by drawing air through it from atmospheric pressure with a large centrifugal compressor. The effect of rotational speed was examined for several constant mainsteam flow rates by controlling the rotor speed with an air brake. The circumferential variation in hub static pressure was measured at the trailing edge of the NGV’s upstream of the seal gap and was found to significantly affect ingestion. The hub static pressure distribution on the rotor blade leading edges was rotor speed dependent and could not be measured in the experiments. The Denton 3D C.F.D. computer code was used to predict the smoothed time dependent pressure field for the rotor together with the pressure distribution downstream of the NGV’s. The level and distribution of mainstream ingestion, and thus the seal effectiveness, was determined from nitrous oxide gas concentration measurements and related to static pressure measurements made throughout the wheelspace. With the axial clearance rim seal close to the rotor the presence of the blades had a complex effect. Rotor blades in connection with NGV’s were found to significantly reduce mainstream ingestion seal flow rates, but a small level of ingestion existed even for very high levels of seal flow rate.


Sign in / Sign up

Export Citation Format

Share Document