Carbohydrate Mimetic Peptides as Anti-Cancer Therapeutics

2021 ◽  
Vol 33 (191) ◽  
pp. E1-E4
Author(s):  
Motohiro Nonaka
2019 ◽  
Vol 18 (30) ◽  
pp. 2555-2566 ◽  
Author(s):  
Bhaswati Chatterjee

The resistance to chemotherapeutics by the cancerous cells has made its treatment more complicated. Animal venoms have emerged as an alternative strategy for anti-cancer therapeutics. Animal venoms are cocktails of complex bioactive chemicals mainly disulfide-rich proteins and peptides with diverse pharmacological actions. The components of venoms are specific, stable, and potent and have the ability to modify their molecular targets thus making them good therapeutics candidates. The isolation of cancer-specific components from animal venoms is one of the exciting strategies in anti-cancer research. This review highlights the identified venom peptides and proteins from different venomous animals like snakes, scorpions, spiders, bees, wasps, snails, toads, frogs and sea anemones and their anticancer activities including inhibition of proliferation of cancer cells, their invasion, cell cycle arrest, induction of apoptosis and the identification of involved signaling pathways.


2015 ◽  
Vol 15 (7) ◽  
pp. 869-880 ◽  
Author(s):  
Guang-Chun Sun ◽  
X Yang ◽  
Yan Yu ◽  
Dai-Wei Zhao

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Muntaha Talat ◽  
Shaan Bibi Jaffri ◽  
Neelofer Shaheen

AbstractConventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 261
Author(s):  
Wei Mao ◽  
Sol Lee ◽  
Ji Un Shin ◽  
Hyuk Sang Yoo

Surface initiated atom transfer radical polymerization (SI-ATRP) documented a simple but efficient technique to grow a dense polymer layer on any surface. Gold nanoparticles (AuNPs) give a broad surface to immobilize sulfhyryl group-containing initiators for SI-ATRP; in addition, AuNPs are the major nanoparticulate carriers for delivery of anti-cancer therapeutics, since they are biocompatible and bioinert. In this work, AuNPs with a disulfide initiator were polymerized with sulfoethyl methacrylate by SI-ATRP to decorate the particles with anionic corona, and branched polyethyeleneimine (PEI) and siRNA were sequentially layered onto the anionic corona of AuNP by electrostatic interaction. The in vitro anti-cancer effect confirmed that AuNP with anionic corona showed higher degrees of apoptosis as well as suppression of the oncogene expression in a siRNA dose-dependent manner. The in vivo study of tumor-bearing nude mice revealed that mice treated with c-Myc siRNA-incorporated AuNPs showed dramatically decreased tumor size in comparison to those with free siRNA for 4 weeks. Furthermore, histological examination and gene expression study revealed that the decorated AuNP significantly suppressed c-Myc expression. Thus, we envision that the layer-by-layer assembly on the anionic brushes can be potentially used to incorporate nucleic acids onto metallic particles with high transfection efficiency.


Author(s):  
Atanu Mondal ◽  
Apoorva Bhattacharya ◽  
Vipin Singh ◽  
Shruti Pandita ◽  
Albino Bacolla ◽  
...  

From initiation through progression, cancer cells are subjected to a magnitude of endogenous and exogenous stresses, which aid in their neoplastic transformation. Exposure to these classes of stress induces imbalance in cellular homeostasis and, in response, cancer cells employ informative adaptive mechanisms to rebalance biochemical processes that facilitate survival and maintain their existence. Different kinds of stress stimuli trigger epigenetic alterations in cancer cells, which leads to changes in their transcriptome and metabolome, ultimately resulting in suppression of growth inhibition or induction of apoptosis. Whether cancer cells show a protective response to stress or succumb to cell death depends on the type of stress and duration of exposure. A thorough understanding of epigenetic and molecular architecture of cancer cell stress response pathways can unveil a plethora of information required to develop novel anti-cancer therapeutics. The present view highlights current knowledge about alterations in epigenome and transcriptome of cancer cells as a consequence of exposure to different physicochemical stressful stimuli such as reactive oxygen species (ROS), hypoxia, radiation, hyperthermia, genotoxic agents, and nutrient deprivation. Currently, an anti-cancer treatment scenario involving the imposition of stress on target cancer cells is gaining traction to augment or even replace conventional therapeutic regimens. Therefore, a comprehensive understanding of stress response pathways is crucial for devising and implementing novel therapeutic strategies.


2021 ◽  
Author(s):  
Natalie Carroll ◽  
Alena Smith ◽  
Brian A. Salvatore ◽  
Elahe Mahdavian

Abstract Background: Fusarochromanone (FC101) is a small molecule with potent anti-cancer activity. It was originally derived from the fungal plant pathogen, Fusarium equiseti, and it has also been synthesized in non-racemic form in our lab. Numerous studies reveal the promising biological activity of FC101, including potent anti-angiogenic and anti-cancer activity. While FC101 is potent as a single drug treatment across many cancer cell lines, current cancer therapies often incorporate a combination of drugs in order to increase efficacy and decrease the development of drug resistance. In this study, we leverage drug combinations and cellular phenotypic screens to address important questions about FC101’s mode of action and its potential synergies as an anti-cancer therapeutic agent in triple negative breast cancer (TNBC).Method: We hypothesized that FC101’s activity against TNBC is similar to the known mTOR inhibitor, everolimus, because FC101 reduces the phosphorylation of two key mTOR substrates, S6K and S6. Since everolimus synergistically enhances the anti-cancer activities of known EGFR inhibitors (erlotinib or lapatinib) in TNBC, we performed analogous studies with FC101. Phenotypic cellular assays helped assess whether FC101 (in both single and combination treatments) acts similarly to everolimus.Results: FC101 outperformed all other single treatments in both cell proliferation and viability assays. Unlike everolimus, however, FC101 brought about a sustained decrease in cell viability in drug washout studies. None of the other drugs were able to maintain comparable effects upon removal of the treatment agents. Although we observed slightly additive effects when the TNBC cells were treated with FC101 and either EGFR inhibitor, those effects were not truly synergistic in the manner displayed with everolimus. Conclusion: Our results rule out direct inhibition of mTOR by FC101 and suggest that FC101 acts through a different mechanism than everolimus. This lays the foundation for the refinement of our hypothesis in order to better understand FC101’s mode of action as a novel anti-cancer agent.


2014 ◽  
pp. 491-505 ◽  
Author(s):  
Francesco Nicotra ◽  
Luca Gabrielli ◽  
Davide Bini ◽  
Laura Russo ◽  
Antonella Sgambato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document