Breast Cancer Therapeutics Based on Fusarochromanone and EGFR Inhibitors

Author(s):  
Natalie Carroll ◽  
Alena Smith ◽  
Brian A. Salvatore ◽  
Elahe Mahdavian

Abstract Background: Fusarochromanone (FC101) is a small molecule with potent anti-cancer activity. It was originally derived from the fungal plant pathogen, Fusarium equiseti, and it has also been synthesized in non-racemic form in our lab. Numerous studies reveal the promising biological activity of FC101, including potent anti-angiogenic and anti-cancer activity. While FC101 is potent as a single drug treatment across many cancer cell lines, current cancer therapies often incorporate a combination of drugs in order to increase efficacy and decrease the development of drug resistance. In this study, we leverage drug combinations and cellular phenotypic screens to address important questions about FC101’s mode of action and its potential synergies as an anti-cancer therapeutic agent in triple negative breast cancer (TNBC).Method: We hypothesized that FC101’s activity against TNBC is similar to the known mTOR inhibitor, everolimus, because FC101 reduces the phosphorylation of two key mTOR substrates, S6K and S6. Since everolimus synergistically enhances the anti-cancer activities of known EGFR inhibitors (erlotinib or lapatinib) in TNBC, we performed analogous studies with FC101. Phenotypic cellular assays helped assess whether FC101 (in both single and combination treatments) acts similarly to everolimus.Results: FC101 outperformed all other single treatments in both cell proliferation and viability assays. Unlike everolimus, however, FC101 brought about a sustained decrease in cell viability in drug washout studies. None of the other drugs were able to maintain comparable effects upon removal of the treatment agents. Although we observed slightly additive effects when the TNBC cells were treated with FC101 and either EGFR inhibitor, those effects were not truly synergistic in the manner displayed with everolimus. Conclusion: Our results rule out direct inhibition of mTOR by FC101 and suggest that FC101 acts through a different mechanism than everolimus. This lays the foundation for the refinement of our hypothesis in order to better understand FC101’s mode of action as a novel anti-cancer agent.

Author(s):  
Tati Herlina ◽  
Unang Supratman ◽  
Anas Subarnas ◽  
Supriyatna Sutardjo ◽  
Suseno Amien ◽  
...  

Erythrina plants, locally known as “dadap ayam”, are higher plant species and have been used as a folk medicine for treatment of cancer. To prove the effectiveness of the leaves and stem bark of E. variegata as an anti-cancer agent, the assay in this research was focused on in vitro test towards breast cancer cell T47D. In the course of our continuing search for novel anti-cancer agent from Erythrina plants, the methanol extract of the leaves and stem bark of E. variegata showed significant anti-cancer activity against breast cancer cell T47D in vitro using the Sulphorhodamine B (SRB) assay. By using the anti-cancer activity to follow the separations, the methanol extract was separated by combination of column chromatography. The chemical structure of an anti-cancer compounds were determined on the basis of spectroscopic evidence and comparison with the previously reported and identified as an erythrina alkaloid (1) and isoflavonoid (2). Compounds (1-2) showed anti-cancer activity against breast cancer cell T47D used with IC50 of  1.0 and 3.3 µg/mL, respectively. This results strongly suggested that E. variegata is promising sources for anti-cancer agents. Keywords: Anti-cancer, Erythrina variegata, Leguminoseae


2014 ◽  
pp. 98-101
Author(s):  
Thi Bich Hien Le ◽  
Viet Duc Ho ◽  
Thi Hoai Nguyen

Nowadays, cancer treatment has been a big challenge to healthcare systems. Most of clinical anti-cancer therapies are toxic and cause adverse effects to human body. Therefore, current trend in science is seeking and screening of natural compounds which possess antineoplastic activities to utilize in treatment. Uvaria L. - Annonaceae includes approximately 175 species spreading over tropical areas of Asia, Australia, Africa and America. Studies on chemical compositions and pharmacological effects of Uvaria showed that several compound classes in this genus such as alkaloid, flavonoid, cyclohexen derivaties, acetogenin, steroid, terpenoid, etc. indicate considerable biological activities, for example anti-tumor, anti-cancer, antibacterial, antifungal, antioxidant, etc. Specifically, anti-cancer activity of fractions of extract and pure isolated compounds stands out for cytotoxicity against many cancer cell lines. This study provides an overview of anti-cancer activity of Uvaria and suggests a potential for further studies on seeking and developing novel anti-cancer compounds. Key words: Anti-cancer, Uvaria.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2873
Author(s):  
Shu-Chun Chang ◽  
Chin-Sheng Hung ◽  
Bo-Xiang Zhang ◽  
Tsung-Han Hsieh ◽  
Wayne Hsu ◽  
...  

Breast cancer (BRCA) malignancy causes major fatalities amongst women worldwide. SCF (Skp1-cullin-F-box proteins) E3 ubiquitin ligases are the most well-known members of the ubiquitination–proteasome system (UPS), which promotes cancer initiation and progression. Recently, we demonstrated that FBXL8, a novel F-box protein (SCFF-boxes) of SCF E3 ligase, accelerates BRCA advancement and metastasis. Since SCFF-boxes is a key component of E3 ligases, we hypothesized that other SCFF-boxes besides FBXL8 probably collaborate in regulating breast carcinogenesis. In this study, we retrospectively profiled the transcriptome of BRCA tissues and found a notable upregulation of four SCFF-box E3 ligases (FBXL8, FBXO43, FBXO15, and CCNF) in the carcinoma tissues. Similar to FBXL8, the knockdown of FBXO43 reduced cancer cell viability and proliferation, suggesting its pro-tumorigenic role. The overexpression of CCNF inhibited cancer cell progression, indicating its anti-tumorigenic role. Unexpectedly, CCNF protein was markedly downregulated in BRCA tissues, although its mRNA level was high. We showed that both E3 ligases, FBXL8 and FZR1, pulled down CCNF. Double knockdown of FBXL8 and FZR1 caused CCNF accumulation. On the other hand, CCNF itself pulled down a tumorigenic factor, RRM2, and CCNF overexpression reduced RRM2. Altogether, we propose a signature network of E3 ligases that collaboratively modulates CCNF anti-cancer activity. There is potential to target BRCA through modulation of the partnership axes of (i) CCNF-FBXL8, (ii) CCNF-FZR1, and (iii) CCNF-RRM2, particularly, via CCNF overexpression and activation and FBXL8/FZR1 suppression.


Author(s):  
Jingjing Yang ◽  
Yulu Zhou ◽  
Shuduo Xie ◽  
Ji Wang ◽  
Zhaoqing Li ◽  
...  

Abstract Background Ferroptosis is a newly defined form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxidation and is involved in various pathophysiological conditions, including cancer. Targeting ferroptosis is considered to be a novel anti-cancer strategy. The identification of FDA-approved drugs as ferroptosis inducers is proposed to be a new promising approach for cancer treatment. Despite a growing body of evidence indicating the potential efficacy of the anti-diabetic metformin as an anti-cancer agent, the exact mechanism underlying this efficacy has not yet been fully elucidated. Methods The UFMylation of SLC7A11 is detected by immunoprecipitation and the expression of UFM1 and SLC7A11 in tumor tissues was detected by immunohistochemical staining. The level of ferroptosis is determined by the level of free iron, total/lipid Ros and GSH in the cells and the morphological changes of mitochondria are observed by transmission electron microscope. The mechanism in vivo was verified by in situ implantation tumor model in nude mice. Results Metformin induces ferroptosis in an AMPK-independent manner to suppress tumor growth. Mechanistically, we demonstrate that metformin increases the intracellular Fe2+ and lipid ROS levels. Specifically, metformin reduces the protein stability of SLC7A11, which is a critical ferroptosis regulator, by inhibiting its UFMylation process. Furthermore, metformin combined with sulfasalazine, the system xc− inhibitor, can work in a synergistic manner to induce ferroptosis and inhibit the proliferation of breast cancer cells. Conclusions This study is the first to demonstrate that the ability of metformin to induce ferroptosis may be a novel mechanism underlying its anti-cancer effect. In addition, we identified SLC7A11 as a new UFMylation substrate and found that targeting the UFM1/SLC7A11 pathway could be a promising cancer treatment strategy.


Author(s):  
Lauren Marshall ◽  
Isabel Löwstedt ◽  
Paul Gatenholm ◽  
Joel Berry

The objective of this study was to create 3D engineered tissue models to accelerate identification of safe and efficacious breast cancer drug therapies. It is expected that this platform will dramatically reduce the time and costs associated with development and regulatory approval of anti-cancer therapies, currently a multi-billion dollar endeavor [1]. Existing two-dimensional (2D) in vitro and in vivo animal studies required for identification of effective cancer therapies account for much of the high costs of anti-cancer medications and health insurance premiums borne by patients, many of whom cannot afford it. An emerging paradigm in pharmaceutical drug development is the use of three-dimensional (3D) cell/biomaterial models that will accurately screen novel therapeutic compounds, repurpose existing compounds and terminate ineffective ones. In particular, identification of effective chemotherapies for breast cancer are anticipated to occur more quickly in 3D in vitro models than 2D in vitro environments and in vivo animal models, neither of which accurately mimic natural human tumor environments [2]. Moreover, these 3D models can be multi-cellular and designed with extracellular matrix (ECM) function and mechanical properties similar to that of natural in vivo cancer environments [3].


Cells ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Umamaheswari Natarajan ◽  
Thiagarajan Venkatesan ◽  
Vijayaraghavan Radhakrishnan ◽  
Shila Samuel ◽  
Appu Rathinavelu

Gene expression is often altered by epigenetic modifications that can significantly influence the growth ability and progression of cancers. SAHA (Suberoylanilide hydroxamic acid, also known as Vorinostat), a well-known Histone deacetylase (HDAC) inhibitor, can stop cancer growth and metastatic processes through epigenetic alterations. On the other hand, Letrozole is an aromatase inhibitor that can elicit strong anti-cancer effects on breast cancer through direct and indirect mechanisms. A newly developed inhibitor, RG7388 specific for an oncogene-derived protein called MDM2, is in clinical trials for the treatment of various cancers. In this paper, we performed assays to measure the effects of cell cycle arrest resulting from individual drug treatments or combination treatments with SAHA + letrozole and SAHA + RG7388, using the MCF-7 breast cancer cells. When SAHA was used individually, or in combination treatments with RG7388, a significant increase in the cytotoxic effect was obtained. Induction of cell cycle arrest by SAHA in cancer cells was evidenced by elevated p21 protein levels. In addition, SAHA treatment in MCF-7 cells showed significant up-regulation in phospho-RIP3 and MLKL levels. Our results confirmed that cell death caused by SAHA treatment was primarily through the induction of necroptosis. On the other hand, the RG7388 treatment was able to induce apoptosis by elevating BAX levels. It appears that, during combination treatments, with SAHA and RG7388, two parallel pathways might be induced simultaneously, that could lead to increased cancer cell death. SAHA appears to induce cell necroptosis in a p21-dependent manner, and RG7388 seems to induce apoptosis in a p21-independent manner, outlining differential mechanisms of cell death induction. However, further studies are needed to fully understand the intracellular mechanisms that are triggered by these two anti-cancer agents.


2021 ◽  
pp. 132127
Author(s):  
Namita A. More ◽  
Nitin L. Jadhao ◽  
Rohan J. Meshram ◽  
Prajkta Tambe ◽  
Rajesh A. Salve ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (60) ◽  
pp. 101461-101474 ◽  
Author(s):  
Yung-Lung Chang ◽  
Yu-Juei Hsu ◽  
Ying Chen ◽  
Yi-Wen Wang ◽  
Shih-Ming Huang

Sign in / Sign up

Export Citation Format

Share Document