scholarly journals Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Massimo De Felici

The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs) in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occurin vivounder still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly definedin vitroculture conditions, when PGCs are transformed into embryonic germ (EG) cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.

Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Author(s):  
Arend W. Overeem ◽  
Yolanda W. Chang ◽  
Jeroen Spruit ◽  
Celine M. Roelse ◽  
Susana M. Chuva De Sousa Lopes

The human germ cell lineage originates from primordial germ cells (PGCs), which are specified at approximately the third week of development. Our understanding of the signaling pathways that control this event has significantly increased in recent years and that has enabled the generation of PGC-like cells (PGCLCs) from pluripotent stem cells in vitro. However, the signaling pathways that drive the transition of PGCs into gonia (prospermatogonia in males or premeiotic oogonia in females) remain unclear, and we are presently unable to mimic this step in vitro in the absence of gonadal tissue. Therefore, we have analyzed single-cell transcriptomics data of human fetal gonads to map the molecular interactions during the sex-specific transition from PGCs to gonia. The CellPhoneDB algorithm was used to identify significant ligand–receptor interactions between germ cells and their sex-specific neighboring gonadal somatic cells, focusing on four major signaling pathways WNT, NOTCH, TGFβ/BMP, and receptor tyrosine kinases (RTK). Subsequently, the expression and intracellular localization of key effectors for these pathways were validated in human fetal gonads by immunostaining. This approach provided a systematic analysis of the signaling environment in developing human gonads and revealed sex-specific signaling pathways during human premeiotic germ cell development. This work serves as a foundation to understand the transition from PGCs to premeiotic oogonia or prospermatogonia and identifies sex-specific signaling pathways that are of interest in the step-by-step reconstitution of human gametogenesis in vitro.


Development ◽  
1978 ◽  
Vol 46 (1) ◽  
pp. 119-133
Author(s):  
Janet Heasman ◽  
C. C. Wylie

Primordial germ cells (PGCs) of Xenopus laevis have been isolated from early embryos and kept alive in vitro, in order to study the structural basis of their motility, using the transmission and scanning electron microscope. The culture conditions used mimicked as closely as possible the in vivo environment of migrating PGCs, in that isolated PGCs were seeded onto monolayers of amphibian mesentery cells. In these conditions we have demonstrated that: (a) No significant differences were found between the morphology of PGCs in vitro and in vivo. (b) Structural features involved in PGC movement in vitro include (i) the presence of a filamentous substructure, (ii) filopodial and blunt cell processes, (iii) cell surface specializations. These features are also characteristic of migratory PGCs studied in vivo. (c) PGCs in vitro have powers of invasion similar to those of migrating PGCs in vivo. They occasionally become completely surrounded by cells of the monolayer and, in this situation, bear striking resemblance to PGCs moving between mesentery cells to the site of the developing gonad in stage-44 tadpoles. We conclude that as far as it is possible to assess, the behaviour of isolated PGCs in these in vitro conditions mimics their activities in vivo. This allows us to study the ultrastructural basis of their migration.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3495-3503 ◽  
Author(s):  
M.K. Jaglarz ◽  
K.R. Howard

We describe our analysis of primordial germ cell migration in Drosophila wild-type and mutant embryos using high resolution microscopy and primary culture in vitro. During migratory events the germ cells form transient interactions with each other and surrounding somatic cells. Both in vivo and in vitro they extend pseudopodia and the accompanying changes in the cytoskeleton suggest that actin polymerization drives these movements. These cellular events occur from the end of the blastoderm stage and are regulated by environmental cues. We show that the vital transepithelial migration allowing exit from the gut primordium and passage into the interior of the embryo is facilitated by changes in the structure of this epithelium. Migrating germ cells extend processes in different directions. This phenomenon also occurs in primary culture where the cells move in an unoriented fashion at substratum concentration-dependent rates. In vivo this migration is oriented leading germ cells to the gonadal mesoderm. We suggest that this guidance involves stabilization of states of an intrinsic cellular oscillator resulting in cell polarization and oriented movement.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Dominique Mahé ◽  
Giulia Matusali ◽  
Claire Deleage ◽  
Raquel L. L. S. Alvarenga ◽  
Anne-Pascale Satie ◽  
...  

ABSTRACT Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro. Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo. Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses. IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro. Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.


Reproduction ◽  
2013 ◽  
Vol 146 (1) ◽  
pp. R37-R48 ◽  
Author(s):  
Jessica M Stringer ◽  
Sanna Barrand ◽  
Patrick Western

In mice, epiblast cells found both the germ-line and somatic lineages in the developing embryo. These epiblast cells carry epigenetic information from both parents that is required for development and cell function in the fetus and during post-natal life. However, germ cells must establish an epigenetic program that supports totipotency and the configuration of parent-specific epigenetic states in the gametes. To achieve this, the epigenetic information inherited by the primordial germ cells at specification is erased and new epigenetic states are established during development of the male and female germ-lines. Errors in this process can lead to transmission of epimutations through the germ-line, which have the potential to affect development and disease in the parent's progeny. This review discusses epigenetic reprogramming in the germ-line and the transmission of epigenetic information to the following generation.


2006 ◽  
Vol 95 (1-2) ◽  
pp. 67-74 ◽  
Author(s):  
Jeong M. Lim ◽  
Huck M. Kwon ◽  
Duk K. Kim ◽  
Jin N. Kim ◽  
Tae S. Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document