scholarly journals Non-destructive Assessment of Highbush Blueberry Fruit Maturity Parameters and Anthocyanins by Using a Visible/Near Infrared (vis/NIR) Spectroscopy Device: A Preliminary Approach

Author(s):  
A Ribera-Fonseca ◽  
M Noferini ◽  
A.D Rombolá
Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


2016 ◽  
Vol 24 (6) ◽  
pp. 517-528 ◽  
Author(s):  
Susanna Pulkka ◽  
Vincent Segura ◽  
Anni Harju ◽  
Tarja Tapanila ◽  
Johanna Tanner ◽  
...  

High-throughput and non-destructive methods for quantifying the content of the stilbene compounds of Scots pine ( Pinus sylvestris L.) heartwood are needed in the breeding for decay resistance of heartwood timber. In this study, near infrared (NIR) spectroscopy calibrations were developed for a large collection of solid heartwood increment core samples in order to predict the amount of the stilbene pinosylvin (PS), its monomethyl ether (PSM) and their sum (STB). The resulting models presented quite accurate predictions in an independent validation set with R2V values ranging between 0.79 and 0.91. The accuracy of the models strongly depended on the chemical being calibrated, with the lowest accuracy for PS, intermediate accuracy for PSM and highest accuracy for STB. The effect of collecting one, two or more (up to five) spectra per sample on the calibration models was studied and it was found that averaging multiple spectra yielded better accuracy as it may account for the heterogeneity of wood along the increment core within and between rings. Several statistical pretreatments of the spectra were tested and an automatic selection of wavenumbers prior to calibration. Without the automatic selection of wavenumbers, a first derivative of normalised spectra yielded the best accuracies, whereas after the automatic selection of wavenumbers, no particular statistical pretreatment appeared to yield better results than any other. Finally, the automatic selection of wavenumbers slightly improved the accuracy of the models for all traits. These results demonstrate the potential of NIR spectroscopy as a high-throughput and non-destructive phenotyping technique in tree breeding for the improvement of decay resistance in heartwood timber.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 98 ◽  
Author(s):  
Teodora Basile ◽  
Antonio Domenico Marsico ◽  
Maria Francesca Cardone ◽  
Donato Antonacci ◽  
Rocco Perniola

Fourier-transform near infrared spectroscopy (FT-NIR) is a technique used in the compositional and sensory analysis of foodstuffs. In this work, we have measured the main maturity parameters for grape (sugars and acids) using hundreds of intact berry samples to build models for the prediction of these parameters from berries of two very different varieties: “Victoria” and “Autumn Royal”. Together with the chemical composition in terms of sugar and acidic content, we have carried out a sensory analysis on single berries. Employing the models built for sugars and acids it was possible to learn the sweetness and acidity of each berry before the destructive sensory analysis. The direct correlation of sensory data with FT-NIR spectra is difficult; therefore, spectral data were exported from the spectrometer built-in software and analyzed with R software using a statistical analysis technique (Spearman correlation) which allowed the correlation of berry appreciation data with specific wavelengths that were then related to sugar and acidic content. In this article, we show how it is possible to carry out the analysis of single berries to obtain data on chemical composition parameters and consumer appreciation with a fast, simple, and non-destructive technique with a clear advantage for producers and consumers.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1845 ◽  
Author(s):  
Kiah Edwards ◽  
Marena Manley ◽  
Louwrens C. Hoffman ◽  
Anel Beganovic ◽  
Christian G. Kirchler ◽  
...  

Near-infrared (NIR) spectroscopy, combined with multivariate data analysis techniques, was used to rapidly differentiate between South African game species, irrespective of the treatment (fresh or previously frozen) or the muscle type. These individual classes (fresh; previously frozen; muscle type) were also determined per species, using hierarchical modelling. Spectra were collected with a portable handheld spectrophotometer in the 908–1676-nm range. With partial least squares discriminant analysis models, we could differentiate between the species with accuracies ranging from 89.8%–93.2%. It was also possible to distinguish between fresh and previously frozen meat (90%–100% accuracy). In addition, it was possible to distinguish between ostrich muscles (100%), as well as the forequarters and hindquarters of the zebra (90.3%) and springbok (97.9%) muscles. The results confirm NIR spectroscopy’s potential as a rapid and non-destructive method for species identification, fresh and previously frozen meat differentiation, and muscle type determination.


2020 ◽  
Vol 38 (No. 2) ◽  
pp. 131-136
Author(s):  
Wojciech Poćwiardowski ◽  
Joanna Szulc ◽  
Grażyna Gozdecka

The aim of the study was to elaborate a universal calibration for the near infrared (NIR) spectrophotometer to determine the moisture of various kinds of vegetable seeds. The research was conducted on the seeds of 5 types of vegetables – carrot, parsley, lettuce, radish and beetroot. For the spectra correlation with moisture values, the method of partial least squares regression (PLS) was used. The resulting qualitative indicators of a calibration model (R = 0.9968, Q = 0.8904) confirmed an excellent fit of the obtained calibration to the experimental data. As a result of the study, the possibilities of creating a calibration model for NIR spectrophotometer for non-destructive moisture analysis of various kinds of vegetable seeds was confirmed.<br /><br />


2011 ◽  
Author(s):  
M Ormsby ◽  
T Barrett ◽  
J. B. Lang ◽  
J. Mazurek ◽  
M. Schilling

<p>Gelatin sizing was a key ingredient during the handpapermaking era. The gelatin concentration in historical papers has never been well documented, however, because measuring the gelatin content required destructive sampling. In this project we developed a non-destructive method using near infrared (NIR) spectroscopy. Gelatin concentrations of 40 historical papers from the 15<sup>th</sup>-18<sup>th</sup> centuries were determined from amino acid (AA) concentrations by using gas chromatography/mass spectroscopy. These values were combined with NIR spectra from the same papers to generate a model for predicting concentrations of unknowns. If a NIR measurement predicted a gelatin concentration in the range 0-6 percent then there is a 95% probability that the difference between the NIR model value and a destructive AA measurement would be between -1.6 and +1.3 percentage points. For 6-8 percent there is a 95% probability the difference would be between -2.0 and +1.5 percentage points, and for 8-12 percent the difference is between -3.0 and +2.0 percentage points. In a study of 159 specimens from books, loose leaves, and artworks printed from 1460-1791, the means for all papers were quite high in the 15<sup>th</sup> century and dropped an average of 20% every 50 years. Possible explanations for the decline are offered.</p>


2006 ◽  
Vol 57 (4) ◽  
pp. 403 ◽  
Author(s):  
Robert L. Long ◽  
Kerry B. Walsh

The imposition of a minimum total soluble solids (TSS) value as a quality standard for orange-flesh netted melon fruit (Cucumis melo L. reticulatus group) requires either a batch sampling procedure (i.e. the estimation of the mean and standard deviation of a population), or the individual assessment of fruit [e.g. using a non-destructive procedure such as near infrared (NIR) spectroscopy]. Several potential limitations to the NIR assessment of fruit, including the variation in TSS within fruit and the effect of fruit storage conditions on the robustness of calibration models, were considered in this study. Outer mesocarp TSS was 3 TSS units higher at the stylar end of the fruit compared with the stem end, and the TSS of inner mesocarp was higher than outer tissue and more uniform across spatial positions. The linear relationship between the outer 10 mm and the subsequent middle 10 mm of tissue varied with fruit maturity [e.g. 42 days before harvest (DBH), r 2 = 0.8; 13 DBH, r 2 = 0.4; 0 DBH, r 2 = 0.7], and with cultivars (at fruit maturity, Eastern Star 2001 r 2 = 0.88; Malibu 2001 r 2 = 0.59). This relationship notably affected NIR calibration performance (e.g. based on inner mesocarp TSS; R c 2 = 0.80, root mean standard error of cross-validation (RMSECV) = 0.65, and R c 2 = 0.41, RMSECV = 0.88 for mature Eastern Star and Malibu fruit, respectively). Cold storage of fruit (0–14 days at 5°C) did not affect NIR model performance. Model performance was equivalent when based on either that part of the fruit in contact with the ground or equatorial positions; however, it was improved when based on the stylar end of the fruit.


2014 ◽  
Vol 43 (24) ◽  
pp. 8200-8214 ◽  
Author(s):  
Marena Manley

Principles, interpretation and applications of near-infrared (NIR) spectroscopy and NIR hyperspectral imaging are reviewed.


Sign in / Sign up

Export Citation Format

Share Document