scholarly journals High Sodium Intake: Review of Recent Issues on Its Association with Cardiovascular Events and Measurement Methods

2015 ◽  
Vol 45 (3) ◽  
pp. 175 ◽  
Author(s):  
Moo-Yong Rhee
BMJ Open ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. e056255
Author(s):  
Jeong-Hyeon Bae ◽  
Min-Young Shin ◽  
Eun Ha Kang ◽  
Yun Jong Lee ◽  
You-Jung Ha

ObjectivesHigh salt intake has a harmful effect on hypertension; however, the association between major adverse cardiovascular events (MACE) and salt intake is still controversial. Rheumatoid arthritis (RA) is also characterised by excess cardiovascular risk. However, few studies have investigated the combined role of salt intake and RA in MACE in the general Korean population. Here, we evaluated this relationship among the Korean adult population.DesignRetrospective, cross-sectional.SettingPopulation-based survey in Korea.MethodsThis study was based on the data of the seventh Korean National Health and Nutrition Examination Survey (2016–2018). The estimated 24-hour urinary sodium excretion (24HUNa), a surrogate marker for daily sodium intake, was calculated using the Tanaka equation and was stratified into five groups (<3, 3–3.999, 4–4.999, 5–5.999 and ≥6 g/day). Finally, data from 13 464 adult participants (weighted n=90 425 888) were analysed; all analyses considered a complex sampling design. Multivariable logistic regression for MACE as primary dependent variable was performed and adjusted for potential covariates.ResultsParticipants with MACE had higher 24HUNa levels and RA proportion than those without MACE (p<0.001). The association of MACE with 24HUNa was J-shaped with a gradual increase from about 3 g/day. The highest 24HUNa (≥6 g/day) group was significantly associated with increased prevalence of MACE compared with the reference group (3–3.999 g/day) after adjusting for all associated covariates (OR 6.75, 95% CI 1.421 to 32.039). In the multivariate logistic regression analysis, RA (OR 2.05, 95% CI 1.283 to 3.264) and the highest 24HUNa group (OR 6.35, 95% CI 1.337 to 30.147) were significantly associated with MACE even after adjusting for baseline covariates.ConclusionsThese nationally representative data suggest that RA and extremely high sodium intake are associated with MACE in the general adult Korean population. Avoiding extremely high salt intake and considering RA as an important risk factor for MACE might help promote public cardiovascular health.


2021 ◽  
Vol 40 (S1) ◽  
Author(s):  
Ruhaya Salleh ◽  
Shubash Shander Ganapathy ◽  
Norazizah Ibrahim Wong ◽  
Siew Man Cheong ◽  
Mohamad Hasnan Ahmad ◽  
...  

Abstract Background Studies have shown that having away from home meals contributes to high sodium intake among young people and those who lived in urban areas. This study aimed to determine the association between dietary sodium intake, body mass index, and away from home meal consumption behaviour among Malaysian adults. Methods MyCoSS was a cross-sectional household survey involving 1440 adults age 18 years and above. This study utilized stratified cluster sampling to obtain a nationally representative sample. Data was collected between October 2017 and March 2018. Socio-demographic information, dietary assessment using food frequency questionnaire (FFQ), and away from home meal consumption were assessed through a face-to-face interview by trained health personnel. Descriptive analysis and logistic regression were applied to identify the association of socioeconomic status and away from home meal consumption with dietary sodium intake. Results A total of 1032 participants completed the FFQ, with a mean age of 48.8 + 15.6 years. Based on the FFQ, slightly over half of the participants (52.1%) had high sodium intake. Results showed that 43.6% of participants consumed at least one to two away from home meals per day, while 20.8% of them had their three main meals away from home. Participants aged less than 30 years old were the strongest predictor to consume more sodium (adjusted OR: 3.83; 95%CI: 2.23, 6.58) while those of Indian ethnicity had significantly lower sodium intake. Surprisingly, having three away from home meals per day was not associated with high dietary sodium intake, although a significant association (crude OR; 1.67, 95% CI: 1.19, 2.35) was found in the simple logistic regression. Obese participants were less likely to have high dietary sodium intake compared with the normal BMI participants in the final model. Conclusion Over half of the participants consumed sodium more than the recommended daily intake, especially those who consumed three away from home meals. However, there was no significant association between high sodium intake and having three away from home meals per day. The promotion of healthy cooking methods among the public must continue to be emphasized to reduce the dietary sodium intake among Malaysian adults.


2012 ◽  
Vol 303 (3) ◽  
pp. F412-F419 ◽  
Author(s):  
Preethi Samuel ◽  
Quaisar Ali ◽  
Rifat Sabuhi ◽  
Yonnie Wu ◽  
Tahir Hussain

High sodium intake is known to regulate the renal renin-angiotensin system (RAS) and is a risk factor for the pathogenesis of obesity-related hypertension. The complex nature of the RAS reveals that its various components may have opposing effects on natriuresis and blood pressure regulation. We hypothesized that high sodium intake differentially regulates and shifts a balance between opposing components of the renal RAS, namely, angiotensin-converting enzyme (ACE)-ANG II-type 1 ANG II receptor (AT1R) vs. AT2-ACE2-angiotensinogen (Ang) (1–7)-Mas receptor (MasR), in obesity. In the present study, we evaluated protein and/or mRNA expression of angiotensinogen, renin, AT1A/BR, ACE, AT2R, ACE2, and MasR in the kidney cortex following 2 wk of a 8% high-sodium (HS) diet in lean and obese Zucker rats. The expression data showed that the relative expression pattern of ACE and AT1BR increased, renin decreased, and ACE2, AT2R, and MasR remained unaltered in HS-fed lean rats. On the other hand, HS intake in obese rats caused an increase in the cortical expression of ACE, a decrease in ACE2, AT2R, and MasR, and no changes in renin and AT1R. The cortical levels of ANG II increased by threefold in obese rats on HS compared with obese rats on normal salt (NS), which was not different than in lean rats. The HS intake elevated mean arterial pressure in obese rats (27 mmHg) more than in lean rats (16 mmHg). This study suggests that HS intake causes a pronounced increase in ANG II levels and a reduction in the expression of the ACE2-AT2R-MasR axis in the kidney cortex of obese rats. We conclude that such changes may lead to the potentially unopposed function of AT1R, with its various cellular and physiological roles, including the contribution to the pathogenesis of obesity-related hypertension.


2011 ◽  
Vol 301 (2) ◽  
pp. F334-F343 ◽  
Author(s):  
David W. Good ◽  
Thampi George ◽  
Bruns A. Watts

A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO3−. Here, we examined the role of the apical NHE3 and basolateral NHE1 Na+/H+ exchangers in this adaptation. MTALs from rats drinking H2O or 0.28 M NaCl for 5–7 days were perfused in vitro. High sodium intake increased HCO3− absorption rate by 60%. The increased HCO3− absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO3− absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na+/H+ exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na+/H+ exchange activity by 30% under conditions in which basolateral Na+/H+ exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO3− absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO3− absorption. The adaptive increases in Na+/H+ exchange activity and HCO3− absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance.


2017 ◽  
Vol 35 ◽  
pp. e89
Author(s):  
M. Rhee ◽  
J. Kim ◽  
S. Shin ◽  
D. Nah ◽  
N. Gu ◽  
...  

2007 ◽  
Vol 293 (4) ◽  
pp. R1657-R1665 ◽  
Author(s):  
Annie Beauséjour ◽  
Véronique Houde ◽  
Karine Bibeau ◽  
Rébecca Gaudet ◽  
Jean St-Louis ◽  
...  

Sodium supplementation given for 1 wk to nonpregnant rats induces changes that are adequate to maintain renal and circulatory homeostasis as well as arterial blood pressure. However, in pregnant rats, proteinuria, fetal growth restriction, and placental oxidative stress are observed. Moreover, the decrease in blood pressure and expansion of circulatory volume, normally associated with pregnancy, are prevented by high-sodium intake. We hypothesized that, in these pregnant rats, a loss of the balance between prooxidation and antioxidation, particularly in kidneys and heart, disturbs the normal course of pregnancy and leads to manifestations such as gestational hypertension. We thus investigated the presence of oxidative/nitrosative stress in heart and kidneys following high-sodium intake in pregnant rats. Markers of this stress [8-isoprostaglandin F2α (8-iso-PGF2α) and nitrotyrosine], producer of nitric oxide [nitric oxide synthases (NOSs)], and antioxidants [superoxide dismutase (SOD) and catalase] were measured. Then, molecules (Na+-K+-ATPase and aconitase) or process [apoptosis (Bax and Bcl-2), inflammation (monocyte chemoattractant protein-1, connective tissue growth factor, and TNF-α)] susceptible to free radicals was determined. In kidneys from pregnant rats on 1.8% NaCl-water, NOSs, apoptotic index, and nitrotyrosine expression were increased, whereas Na+-K+-ATPase mRNA and activity were decreased. In the left cardiac ventricle of these rats, heightened nitrotyrosine, 8-iso-PGF2α, and catalase activity together with reduced endothelial NOS protein expression and SOD and aconitase activities were observed. These findings suggest that oxidative/nitrosative stress in kidney and left cardiac ventricle destabilizes the normal course of pregnancy and could lead to gestational hypertension.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Bruno Moreira Silva ◽  
Rachel L. Elvebak ◽  
Jean N. Knutson ◽  
Nathaniel D. Warner ◽  
Michael J. Joyner ◽  
...  

BMJ ◽  
2019 ◽  
pp. l772 ◽  
Author(s):  
Martin O’Donnell ◽  
Andrew Mente ◽  
Sumathy Rangarajan ◽  
Matthew J McQueen ◽  
Neil O’Leary ◽  
...  

AbstractObjectiveTo evaluate the joint association of sodium and potassium urinary excretion (as surrogate measures of intake) with cardiovascular events and mortality, in the context of current World Health Organization recommendations for daily intake (<2.0 g sodium, >3.5 g potassium) in adults.DesignInternational prospective cohort study.Setting18 high, middle, and low income countries, sampled from urban and rural communities.Participants103 570 people who provided morning fasting urine samples.Main outcome measuresAssociation of estimated 24 hour urinary sodium and potassium excretion (surrogates for intake) with all cause mortality and major cardiovascular events, using multivariable Cox regression. A six category variable for joint sodium and potassium was generated: sodium excretion (low (<3 g/day), moderate (3-5 g/day), and high (>5 g/day) sodium intakes) by potassium excretion (greater/equal or less than median 2.1 g/day).ResultsMean estimated sodium and potassium urinary excretion were 4.93 g/day and 2.12 g/day, respectively. After a median follow-up of 8.2 years, 7884 (6.1%) participants had died or experienced a major cardiovascular event. Increasing urinary sodium excretion was positively associated with increasing potassium excretion (unadjusted r=0.34), and only 0.002% had a concomitant urinary excretion of <2.0 g/day of sodium and >3.5 g/day of potassium. A J-shaped association was observed of sodium excretion and inverse association of potassium excretion with death and cardiovascular events. For joint sodium and potassium excretion categories, the lowest risk of death and cardiovascular events occurred in the group with moderate sodium excretion (3-5 g/day) and higher potassium excretion (21.9% of cohort). Compared with this reference group, the combinations of low potassium with low sodium excretion (hazard ratio 1.23, 1.11 to 1.37; 7.4% of cohort) and low potassium with high sodium excretion (1.21, 1.11 to 1.32; 13.8% of cohort) were associated with the highest risk, followed by low sodium excretion (1.19, 1.02 to 1.38; 3.3% of cohort) and high sodium excretion (1.10, 1.02 to 1.18; 29.6% of cohort) among those with potassium excretion greater than the median. Higher potassium excretion attenuated the increased cardiovascular risk associated with high sodium excretion (P for interaction=0.007).ConclusionsThese findings suggest that the simultaneous target of low sodium intake (<2 g/day) with high potassium intake (>3.5 g/day) is extremely uncommon. Combined moderate sodium intake (3-5 g/day) with high potassium intake is associated with the lowest risk of mortality and cardiovascular events.


Sign in / Sign up

Export Citation Format

Share Document