scholarly journals Sporadic Early Life Solder Ball Detachment Effects on Subsequent Microstructure Evolution and Fatigue of Solder Joints in Wafer-Level Chip-Scale Packages

2020 ◽  
Vol 17 (1) ◽  
pp. 13-22
Author(s):  
Simon Schambeck ◽  
Matthias Hutter ◽  
Johannes Jaeschke ◽  
Andrea Deutinger ◽  
Martin Schneider-Ramelow

Abstract The combination of continuous miniaturization of electronics and the demanding reliability requirements for industrial and automotive electronics is one big challenge for emerging packaging technology. One aspect is to increase the understanding of the damage under environmental loading. Therefore, the solder joints of a wafer-level chip-scale package assembled on a printed circuit board (PCB) have been analyzed after a temperature cycling test. In the case of the investigated package, a limited number of joints did not form a proper mechanical connection with the PCB copper pad. Although not intended in the first place, these circumstances cause a detachment of those joints within the first few thermal cycles. However, this constellation offers a unique opportunity to compare the solder joint microstructure after thermomechanical loading (connected joints) with pure thermal loading (detached joints) located directly next to each other. It is shown that microstructure aging effects can be directly linked to regions in the joint with increased loading. This is particularly the case for detached joints, which could almost retain their initial microstructure up to the effect of the high-temperature part of the thermal profile. By means of finite element simulation, it is further possible to quantify the increased loading on adjacent joints if isolated solder balls detach from the board. In one case presented, the lifetime of the corner joint was calculated to reduce up to 85% only.

Author(s):  
John Lau ◽  
Yida Zou ◽  
Sergio Camerlo

The creep analyses of solder-bumped wafer-level chip-scale package (WLCSP) on printed circuit board (PCB) subjected to temperature cycling loading are presented. Emphasis is placed on the effects of PCB thickness on the solder joint reliability of the WLCSP assembly. Also, the effects of crack-length on the crack tip characteristics such as the J-integral in the WLCSP solder joint are studied by the fracture mechanics method. Finally, the effects of voids on the crack growth in the WLCSP solder joint are investigated.


2002 ◽  
Vol 124 (3) ◽  
pp. 212-220 ◽  
Author(s):  
John H. Lau ◽  
Stephen H. Pan ◽  
Chris Chang

A new empirical equation for predicting the thermal-fatigue life of wafer level chip scale package (WLCSP) solder joints on printed circuit board (PCB) is presented. The solder joints are subjected to thermal cycling and their crack lengths at different thermal cycles are measured. Also, the average strain energy density around the crack tip of different crack lengths in the corner solder joint is determined by a time-dependent nonlinear fracture mechanics with finite element method. The solder is assumed to be a temperature-dependent elastic-plastic and a time-dependent creep material.


2000 ◽  
Author(s):  
John H. Lau ◽  
Stephen H. Pan ◽  
Chris Chang

Abstract A new empirical equation for predicting the thermal-fatigue life of wafer level chip scale package (WLCSP) solder joints on printed circuit board (PCB) is presented. The solder joints are subjected to thermal cycling and their crack lengths at different thermal cycles are measured. Also, the average strain energy density around the crack tip of different crack lengths in the corner solder joint is determined by a time-dependent nonlinear fracture mechanics with finite element method. The solder is assumed to be a temperature-dependent elastic-plastic and a time-dependent creep material.


2018 ◽  
Vol 15 (4) ◽  
pp. 148-162 ◽  
Author(s):  
John Lau ◽  
Ming Li ◽  
Yang Lei ◽  
Margie Li ◽  
Iris Xu ◽  
...  

Abstract In this study, the reliability (thermal cycling and shock) performances of a fan-out wafer-level system-in-package (SiP) or heterogeneous integration with one large chip (5 × 5 mm), three small chips (3 ×3 mm), and four capacitors (0402) embedded in an epoxy molding compound package (10 × 10 mm) with two redistribution layers (RDLs) are experimentally determined. Emphasis is placed on the estimation of the Weibull life distribution, characteristic life, and failure rate of the solder joint and RDL of this package. The fan-out wafer-level packaging is assembled on a printed circuit board (PCB) with more than 400 (Sn3wt%Ag0.5wt%Cu) solder joints. It is a six-layer PCB. The sample sizes for the thermal cycling test and shock test are, respectively, equal to 60 and 24. The failure location and modes of the thermal cycling test and shock test of the fan-out wafer-level SiP solder joints and RDLs are provided and discussed. 3-D nonlinear finite element models are also constructed and analyzed for the fan-out heterogeneous integration package during thermal cycling and shock conditions. The simulation results are correlated to the experimental results. Finally, recommendations on improving the fan-out wafer-level SiP solder joints and RDLs under thermal and shock conditions are provided.


2000 ◽  
Author(s):  
John H. Lau ◽  
Stephen H. Pan ◽  
Chris Chang

Abstract In this study, time-temperature-dependent nonlinear analyses of lead-free solder bumped wafer level chip scale package (WLCSP) on printed circuit board (PCB) assemblies subjected to thermal cycling conditions are presented. Two different lead-free solder alloys are considered, namely, 96.5wt%Sn-3.5wt%Ag and 100wt%In. The 62wt%Sn-36wt%Pb-2wt%Ag solder alloy is also considered to establish a baseline. All of these solder alloys are assumed to obey the Garofalo-Arrhenius steady-state creep constitutive law. The shear stress and shear creep strain hysteresis loops, shear stress history, and shear creep strain history at the corner solder joint are presented for a better understanding of the thermal-mechanical behaviors of lead-free solder bumped WLCSP on PCB assemblies. Also, the effects of microvia build-up PCB on the WLCSP solder joint reliability are investigated.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Jia Xi ◽  
Xinduo Zhai ◽  
Jun Wang ◽  
Donglun Yang ◽  
Mao Ru ◽  
...  

FeNi alloy is considered a possible substitute for Cu as under bump metallization (UBM) in wafer level package (WLP) since it forms very thin intermetallic compound (IMC) layer with Pb-free solder in the reflow process. In this paper, WLPs with FeNi and Cu UBM were fabricated and their board level reliabilities were studied comparatively. The WLP samples assembled on the printed circuit board (PCB) were subjected to temperature cycling and drop tests according to JEDEC standards. The results showed that the reliability of WLP with FeNi UBM was a little lower than that with Cu UBM. The main failure modes for both FeNi and Cu UBM samples in temperature cycling test were the crack in IMC or solder ball on PCB side. And detachments between UBM and the redistribution layer (RDL) were also observed in Cu UBM WLPs. In drop test, the crack of RDL was found in all failed FeNi UBM samples and part of Cu UBM ones, and the primary failure mode in Cu UBM samples was the crack of IMC on PCB side. In addition, the finite element analysis (FEA) was carried out to further understand the difference of the failure modes between the FeNi UBM samples and the Cu UBM samples. The high stress was observed around the UBM and the pad on PCB in the temperature cycling model. And the maximum stress appeared on the RDL in the drop simulation, which was obviously larger than that on the pad. The FEA results showed that the introduction of FeNi UBM increased the stress levels both in temperature cycling and drop tests. Thus, the FeNi alloy cannot simply replace Cu as UBM in WLP without further package structural optimization.


Sign in / Sign up

Export Citation Format

Share Document