Advanced Chemical Processes for Semi-additive PWB fabrication for Fine Line Formation Targeting Line and Space=5μm/5μm

2015 ◽  
Vol 2015 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Satoshi Kawashima ◽  
Kazutaka Tajima

Demand of powerful & fast computing requires the packaging configured with finer lines. The current requirement for Line and Space (L/S) is around 10μm/10μm, it will go down to less than that and 5 μm/5 μm is industry's target in our site. To achieve this miniaturization, a number of improvements are ongoing in equipment, material and chemical for surface finishing process. It seems there is a threshold which requires non-contiguous improvement for the miniaturization. The improvement in surface finishing process requires finer surface roughening for Dielectric material, selective dissolution of metals, or same metal made by different method such as Electroless copper and Electroplated copper, which never exist in the industry. In this paper, advanced chemical processes for semi-additive process (SAP) to fabricate PWB with fine line formation targeting L/S =5μm/5μm are reported. The series of improvements of chemical process enables confidence to manufacture fine lines which L/S=5μm/5μm using finer surface roughening of Electroless copper seed for better Dry Film Resist (DFR) formation, better stripping of the DFR, selective dissolution of Electroless copper seed, finer surface roughening for Solder Mask application, etc.

2015 ◽  
Vol 2015 (1) ◽  
pp. 000874-000878 ◽  
Author(s):  
Yu-Hua Chen ◽  
Shyh-Lian Cheng ◽  
Dyi-Chung Hu ◽  
Tzvy-Jang Tseng

The requirement for IC packages with higher density interconnection with fine line feature has increased significantly recently. Current organic substrates are limited to line/space 8/8μm for Semi-additive Process(SAP), and it will cause yield loss from adhesion issue of line/space less than 5/5μm. But the impact of bad adhesion of fine line is very small in laser embedded (LE) substrate because of its embedded structure. There are several advantages of LE such as the capacity of stereo copper features and better electric performance with lower variation of trench width/depth. It can form fine pitch trench line/space even less than 3/3μm. It also can provide better design flexibility for its pad-less features and better reliability than SAP process. In this paper, we will discuss the key of the processes and demonstrate the fabrication of fine line substrate of 3/3μm line/space by fine tuning line embedded technology. Line embedded trace was made by laser direct ablation (LDA) on organic build-up dielectric material with fine filler size. Laser ablation process capability shows excellent trench depth and shape control. In order to get better copper thickness uniformity, novel uniformity copper plating technology on via, pad and trench has developed. Low cost and uniformity copper reduction process has also been evaluated and developed.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Dana Ashkenazi ◽  
Alexandra Inberg ◽  
Yosi Shacham-Diamand ◽  
Adin Stern

Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.


2018 ◽  
Vol 2 (4) ◽  
pp. 76 ◽  
Author(s):  
Kai Oßwald ◽  
Ingo Lochmahr ◽  
Yasin Bagci ◽  
Peter Saile

Hand scraping is a manual surface finishing process that, despite its low productivity and high cost, is still applied in many industries because of its advantages concerning accuracy and tribology. In the presented microanalysis forces, movement patterns and tool orientation of individual hand scraping strokes were measured using a test stand, specifically designed for this purpose. It utilizes a camera, a three dimensional dynamometer, and an inertial measurement unit (IMU). The results show the basic characteristics of hand scraping. Typical courses of relevant quantities like cutting force, passive force, clearance, and directional angle are shown. In addition, the movement pattern of the tool during individual scraping strokes is analyzed. This research aims to contribute to a later implementation of automated scraping. The conducted research creates a base for future research regarding different scraping methods and achieved results.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000444-000447 ◽  
Author(s):  
Yoshio Nishimura ◽  
Hirohisa Narahashi ◽  
Shigeo Nakamura ◽  
Tadahiko Yokota

Printed circuit boards manufactured by a semi-additive process are widely used for packaging substrates. Along with increasing demands of downsizing electronic devices with high functionality, packaging substrates installed with semiconductors in such devices are strongly required to be miniaturized with high density of circuit wirings. We report our insulation build-up materials and processes for advanced packages with fine line/space and high reliability. The insulation materials we developed show low coefficient of thermal expansion (CTE), low dielectric loss tangent and good thinner insulation reliability. They can produce fine line and space (FLS) under 10μm pitch by a semi-additive process.


2019 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Joselito Alcaraz ◽  
Kunal Ahluwalia ◽  
Swee-Hock Yeo

Vibratory finishing is a versatile and efficient surface finishing process widely used to finish components of various functionalities. Research efforts were focused in fundamental understanding of the process through analytical solutions and simulations. On the other hand, predictive modelling of surface roughness using computational intelligence (CI) methods are emerging in recent years, though CI methods have not been extensively applied yet to a new vibratory finishing method called double-vibropolishing. In this study, multi-variable regression, artificial neural networks, and genetic programming models were designed and trained with experimental data obtained from subjecting rectangular Ti-6Al-4V test coupons to double vibropolishing in a bowl system configuration. Model selection was done by comparing the mean-absolute percentage error and r-squared values from both training and testing datasets. Exponential regression was determined as the best model for the bowl double-vibropolishing system studied with a Test MAPE score of 6.1% and a R-squared score of 0.99. A family of curves was generated using the exponential regression model as a potential tool in predicting surface roughness with time.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 557 ◽  
Author(s):  
Alexandra Inberg ◽  
Dana Ashkenazi ◽  
Giora Kimmel ◽  
Yosi Shacham-Diamand ◽  
Adin Stern

The current research presents a novel methodology for surface finishing of printed AlSi10Mg parts by electroless deposited gold–silver (electrum) alloys. The parts were printed by additive manufacturing laser powder-bed fusion (AM-LPBF). The electrum was chosen due to its appearance and good electrical and thermal properties and was deposited on disk-shaped specimens at 80 and 90 °C. The coating quality and appearance were studied by different methods for various deposition times and film thicknesses. The results indicate that Au–Ag coatings of AM-LPBF AlSi10Mg yield satisfactory results. The XRD analysis revealed that the coatings were composed of Au–Ag crystalline phases and beneath them, a quasi-amorphous or mixed quasi-amorphous and nanocrystalline Ni–P interlayer. The mechanism of electrum formation was studied based on the XPS analysis results as a function of the temperature and concentration. At 80 °C, the Ag was dominant at the beginning of the deposition process, while at 90 °C the Au was first detected on the interface. This result was explained by the electrochemical properties of alloying metals and the binding energies required to form metal–Ni and Au–Ag bonding. The results indicate that the electrum coatings are satisfactory, and the developed surface finishing process could be used for many applications.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Huijun Xie ◽  
Yanhua Zou

The magnetic abrasive finishing (MAF) process is an ultra-precision surface finishing process. In order to further improve the finishing efficiency and surface quality, the MAF process using an alternating magnetic field was proposed in the previous research, and it was proven that the alternating magnetic field has advantages compared with the static magnetic field. In order to further develop the process, this study investigated the effect on finishing characteristics when the alternating current waveform is a square wave. The difference between the fluctuation behavior of the magnetic cluster in two alternating magnetic fields (sine wave and square wave) is observed and analyzed. Through analysis, it can be concluded that the use of a square wave can make the magnetic cluster fluctuate faster, and as the size of the magnetic particles decreases, the difference between the magnetic cluster fluctuation speed of the two waveforms is greater. The experimental results show that the surface roughness of SUS304 stainless steel plate improves from 328 nm Ra to 14 nm Ra within 40 min.


2014 ◽  
Vol 902 ◽  
pp. 66-69
Author(s):  
Wei Li

With higher cleanness upgraded steadily, surface failure of metallic materials in very high cycle fatigue (VHCF) regime beyond 107 cycles has been reported one after another. The occurrence of surface crack initiation to failure in VHCF regime is closely related to the following factors: (i) surface finishing condition of specimen, i.e. whether some grinding scratches, grooves and cavities with a relatively larger size than the subsurface defect exist at the surface of specimen; (ii) type, size, location, distribution and density of metallurgical defects such as inclusion contained in the subsurface of material; (iii) degree of persistent slip band (PSB) deformation induced by surface roughening of specimen, mainly corresponding to the some ductile single-phase metallic materials.


2013 ◽  
Vol 376 ◽  
pp. 190-194
Author(s):  
S. Rajsiri ◽  
T. Kraiha ◽  
L. Plangklang ◽  
U. Chairue

This research studies the properties of plasma-nitride coating on AISI D2 tool steels prepared by non-directional grinding at various finishing. In the manufacturing process, the AISI D2 was machined to size and hardened with a typical hardening process. In addition, its surface was treated with plasma nitriding. Various levels of roughness were produced as well as possible affects on the nitride coating properties. In this study, the following five conditions of grinding were performed on the hardened specimens: 1-µm diamond particle and four SiC grinding papers: P100, P240, P800, and P2500. The surface finishing with at least 0.023-µm roughness value (P800 grinding) provided a plasma-nitride layer with a moderately good hardness profile and a thick nitride layer compared with other finer finishing. This finishing process was also more economical requiring less time and manpower to create than others. Overall, this study suggests that finer surface finishing has a tendency to significantly improve the tool steels hardness profile and hardened depth.


Sign in / Sign up

Export Citation Format

Share Document