Compound K Inhibits Interleukin-1β-induced Expression of Inflammatory Mediators and Matrix Metalloproteinases by Inhibiting Mitogen-activated Protein Kinase Activation in Chondrocytes

2018 ◽  
Vol 25 (3) ◽  
pp. 188 ◽  
Author(s):  
Eun Hye Park ◽  
Ji Soo Kim ◽  
Jeong Seok Lee ◽  
Yun Jong Lee ◽  
Yeong Wook Song ◽  
...  
2013 ◽  
Vol 111 (3) ◽  
pp. 452-464 ◽  
Author(s):  
Gina Cecilia Pistol ◽  
Mihail Alexandru Gras ◽  
Daniela Eliza Marin ◽  
Florentina Israel-Roming ◽  
Mariana Stancu ◽  
...  

Zearalenone (ZEA) is an oestrogenic mycotoxin produced byFusariumspecies, considered to be a risk factor from both public health and agricultural perspectives. In the presentin vivostudy, a feeding trial was conducted to evaluate thein vivoeffect of a ZEA-contaminated diet on immune response in young pigs. The effect of ZEA on pro-inflammatory (TNF-α, IL-8, IL-6, IL-1β and interferon-γ) and anti-inflammatory (IL-10 and IL-4) cytokines and other molecules involved in inflammatory processes (matrix metalloproteinases (MMP)/tissue inhibitors of matrix metalloproteinases (TIMP), nuclear receptors: PPARγ and NF-κB1, mitogen-activated protein kinases (MAPK): mitogen-activated protein kinase kinase kinase 7 (TAK1)/mitogen-activated protein kinase 14 (p38α)/mitogen-activated protein kinase 8 (JNK1)/ mitogen-activated protein kinase 9 (JNK2)) in the liver of piglets was investigated. The present results showed that a concentration of 316 parts per billion ZEA leads to a significant decrease in the levels of pro- and anti-inflammatory cytokines at both gene expression and protein levels, correlated with a decrease in the levels of other inflammatory mediators, MMP and TIMP. The results also showed that dietary ZEA induces a dramatic reduction in the expressions ofNF-κB1andTAK1/p38αMAPK genes in the liver of the experimentally intoxicated piglets, and has no effect on the expression ofPPARγmRNA. The present results suggest that the toxic action of ZEA begins in the upstream of the MAPK signalling pathway by the inhibition of TAK1, a MAPK/NF-κB activator. In conclusion, the present study shows that ZEA alters several important parameters of the hepatic cellular immune response. From an economic point of view, these data suggest that, in pigs, ZEA is not only a powerful oestrogenic mycotoxin but also a potential hepatotoxin when administered through the oral route. Therefore, the present results represent additional data from cellular and molecular levels that could be taken into account in the determination of the regulation limit of the tolerance to ZEA.


Sign in / Sign up

Export Citation Format

Share Document