scholarly journals 3D printed microfluidic devices for cell culture

2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Marta Canta ◽  
Désirée Baruffaldi ◽  
Ignazio Roppolo ◽  
Annalisa Chiappone ◽  
Candido F. Pirri ◽  
...  

A successful application of the 3D printed materials in the biomedical field requires extensive studies to ensure their biocompatibility at every step of the process. Here, different components suitable for cell applications, including a microfluidic device, were 3D printed using common resins and a deep analysis of their biocompatibility and post printed protocols was conducted.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dohyun Park ◽  
Jungseub Lee ◽  
Younggyun Lee ◽  
Kyungmin Son ◽  
Jin Woo Choi ◽  
...  

AbstractMicrofluidics offers promising methods for aligning cells in physiologically relevant configurations to recapitulate human organ functionality. Specifically, microstructures within microfluidic devices facilitate 3D cell culture by guiding hydrogel precursors containing cells. Conventional approaches utilize capillary forces of hydrogel precursors to guide fluid flow into desired areas of high wettability. These methods, however, require complicated fabrication processes and subtle loading protocols, thus limiting device throughput and experimental yield. Here, we present a swift and robust hydrogel patterning technique for 3D cell culture, where preloaded hydrogel solution in a microfluidic device is aspirated while only leaving a portion of the solution in desired channels. The device is designed such that differing critical capillary pressure conditions are established over the interfaces of the loaded hydrogel solution, which leads to controlled removal of the solution during aspiration. A proposed theoretical model of capillary pressure conditions provides physical insights to inform generalized design rules for device structures. We demonstrate formation of multiple, discontinuous hollow channels with a single aspiration. Then we test vasculogenic capacity of various cell types using a microfluidic device obtained by our technique to illustrate its capabilities as a viable micro-manufacturing scheme for high-throughput cellular co-culture.


Author(s):  
Travis S. Emery ◽  
Anna Jensen ◽  
Koby Kubrin ◽  
Michael G. Schrlau

Three-dimensional (3D) printing is a novel technology whose versatility allows it to be implemented in a multitude of applications. Common fabrication techniques implemented to create microfluidic devices, such as photolithography, wet etching, etc., can often times be time consuming, costly, and make it difficult to integrate external components. 3D printing provides a quick and low-cost technique that can be used to fabricate microfluidic devices in a range of intricate geometries. External components, such as nanoporous membranes, can additionally be easily integrated with minimal impact to the component. Here in, low-cost 3D printing has been implemented to create a microfluidic device to enhance understanding of flow through carbon nanotube (CNT) arrays manufactured for gene transfection applications. CNTs are an essential component of nanofluidic research due to their unique mechanical and physical properties. CNT arrays allow for parallel processing however, they are difficult to construct and highly prone to fracture. As a means of aiding in the nanotube arrays’ resilience to fracture and facilitating its integration into fluidic systems, a 3D printed microfluidic device has been constructed around these arrays. Doing so greatly enhances the robustness of the system and additionally allows for the nanotube array to be implemented for a variety of purposes. To broaden their range of application, the devices were designed to allow for multiple isolated inlet flows to the arrays. Utilizing this multiple inlet design permits distinct fluids to enter the array disjointedly. These 3D printed devices were in turn implemented to visualize flow through nanotube arrays. The focus of this report though, is on the design and fabrication of the 3D printed devices. SEM imaging of the completed device shows that the nanotube array remains intact after the printing process and the nanotubes, even those within close proximity to the printing material, remain unobstructed. Printing on top of the nanotube arrays displayed effective adhesion to the surface thus preventing leakage at these interfaces.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2038-2048 ◽  
Author(s):  
Isabelle C. Samper ◽  
Sally A. N. Gowers ◽  
Michelle L. Rogers ◽  
De-Shaine R. K. Murray ◽  
Sharon L. Jewell ◽  
...  

Microfluidic devices optimised for real-time monitoring of the human brain.


2017 ◽  
Vol 9 (22) ◽  
pp. 3274-3283 ◽  
Author(s):  
Chengpeng Chen ◽  
Alexandra D. Townsend ◽  
Scott A. Sell ◽  
R. Scott Martin

Fibers produced by solution blow spinning (with a 3D printed sheath device) were integrated into a microfluidic device for 3D cell culture.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 520 ◽  
Author(s):  
Eric Lepowsky ◽  
Reza Amin ◽  
Savas Tasoglu

Three-dimensional (3D) printing is emerging as a method for microfluidic device fabrication boasting facile and low-cost fabrication, as compared to conventional fabrication approaches, such as photolithography, for poly(dimethylsiloxane) (PDMS) counterparts. Additionally, there is an increasing trend in the development and implementation of miniaturized and automatized devices for health monitoring. While nonspecific protein adsorption by PDMS has been studied as a limitation for reusability, the protein adsorption characteristics of 3D-printed materials have not been well-studied or characterized. With these rationales in mind, we study the reusability of 3D-printed microfluidics chips. Herein, a 3D-printed cleaning chip, consisting of inlets for the sample, cleaning solution, and air, and a universal outlet, is presented to assess the reusability of a 3D-printed microfluidic device. Bovine serum albumin (BSA) was used a representative urinary protein and phosphate-buffered solution (PBS) was chosen as the cleaning agent. Using the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) fluorescence detection method, the protein cross-contamination between samples and the protein uptake of the cleaning chip were assessed, demonstrating a feasible 3D-printed chip design and cleaning procedure to enable reusable microfluidic devices. The performance of the 3D-printed cleaning chip for real urine sample handling was then validated using a commercial dipstick assay.


RSC Advances ◽  
2014 ◽  
Vol 4 (62) ◽  
pp. 32876-32880 ◽  
Author(s):  
Kyoung G. Lee ◽  
Kyun Joo Park ◽  
Seunghwan Seok ◽  
Sujeong Shin ◽  
Do Hyun Kim ◽  
...  

Direct 3d printing for functional modules and their assembly into an integrated microfluidic device.


2018 ◽  
Vol 60 (7-8) ◽  
pp. 679-686 ◽  
Author(s):  
Jim Floor ◽  
Bas van Deursen ◽  
Erik Tempelman

2021 ◽  
pp. 106934
Author(s):  
Belal M.K. Alnajjar ◽  
André Buchau ◽  
Lars Baumgártner ◽  
Jens Anders
Keyword(s):  

2021 ◽  
Vol 15 (2) ◽  
pp. 024102
Author(s):  
Junchao Wang ◽  
Kaicong Liang ◽  
Naiyin Zhang ◽  
Hailong Yao ◽  
Tsung-Yi Ho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document