nonspecific protein adsorption
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 10)

H-INDEX

22
(FIVE YEARS 3)

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 46
Author(s):  
Sihang Liu ◽  
Jingyi Tang ◽  
Fangqin Ji ◽  
Weifeng Lin ◽  
Shengfu Chen

Nonspecific protein adsorption impedes the sustainability of materials in biologically related applications. Such adsorption activates the immune system by quick identification of allogeneic materials and triggers a rejection, resulting in the rapid failure of implant materials and drugs. Antifouling materials have been rapidly developed in the past 20 years, from natural polysaccharides (such as dextran) to synthetic polymers (such as polyethylene glycol, PEG). However, recent studies have shown that traditional antifouling materials, including PEG, still fail to overcome the challenges of a complex human environment. Zwitterionic materials are a class of materials that contain both cationic and anionic groups, with their overall charge being neutral. Compared with PEG materials, zwitterionic materials have much stronger hydration, which is considered the most important factor for antifouling. Among zwitterionic materials, zwitterionic hydrogels have excellent structural stability and controllable regulation capabilities for various biomedical scenarios. Here, we first describe the mechanism and structure of zwitterionic materials. Following the preparation and property of zwitterionic hydrogels, recent advances in zwitterionic hydrogels in various biomedical applications are reviewed.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7629
Author(s):  
Tomasz Kruk ◽  
Monika Bzowska ◽  
Alicja Hinz ◽  
Michał Szuwarzyński ◽  
Krzysztof Szczepanowicz

Control of nonspecific/specific protein adsorption is the main goal in the design of novel biomaterials, implants, drug delivery systems, and sensors. The specific functionalization of biomaterials can be achieved by proper surface modification. One of the important strategies is covering the materials with functional coatings. Therefore, our work aimed to functionalize multilayer coating to control nonspecific/specific protein adsorption. The polyelectrolyte coating was formed using a layer-by-layer technique (LbL) with biocompatible polyelectrolytes poly-L-lysine hydrobromide (PLL) and poly-L-glutamic acid (PGA). Nonspecific protein adsorption was minimized/eliminated by pegylation of multilayer films, which was achieved by adsorption of pegylated polycations (PLL-g-PEG). The influence of poly (ethylene glycol) chain length on eliminating nonspecific protein adsorption was confirmed. Moreover, to achieve specific protein adsorption, the multilayer film was also functionalized by immobilization of antibodies via a streptavidin bridge. The functional coatings were tested, and the adsorption of the following proteins confirmed the ability to control nonspecific/specific adsorption: human serum albumin (HSA), fibrinogen (FIB), fetal bovine serum (FBS), carcinoembryonic antigen human (CEA) monitored by quartz crystal microbalance with dissipation (QCM-D). AFM imaging of unmodified and modified multilayer surfaces was also performed. Functional multilayer films are believed to have the potential as a novel platform for biotechnological applications, such as biosensors and nanocarriers for drug delivery systems.


Langmuir ◽  
2021 ◽  
Author(s):  
Thuvarakhan Gnanasampanthan ◽  
Cindy D. Beyer ◽  
Wenfa Yu ◽  
Jana F. Karthäuser ◽  
Robin Wanka ◽  
...  

Author(s):  
P. A. Demina ◽  
N. V. Sholina ◽  
R. A. Akasov ◽  
D. A. Khochenkov ◽  
A. V. Nechaev ◽  
...  

Abstract Upconversion nanoparticles (UCNPs) are a promising nanoplatform for bioreagent formation for in vivo imaging, which emit UV and blue light under the action of near-infrared radiation, providing deep tissue penetration and maintaining a high signal-to-noise ratio. In the case of solid tumor visualization, the UCNP surface functionalization is required to ensure a long circulation time, biocompatibility, and non-toxicity. The effective UCNP accumulation in the solid tumors is determined by the disturbed architecture of the vascular network and lymphatic drainage. This work demonstrates an approach to the UCNP biofunctionalization with endogenous polysialic acid for in vivo bioreagent formation. Bioreagents possess a low level of nonspecific protein adsorption and macrophage uptake, which allow the prolongation of the circulation time in the bloodstream up to 3 h. This leads to an intense photoluminescent signal in the tumor.


2020 ◽  
Vol 8 (7) ◽  
pp. 2665-2671 ◽  
Author(s):  
Cindy D. Beyer ◽  
Matthew L. Reback ◽  
Srinivasa M. Gopal ◽  
Kim A. Nolte ◽  
John A. Finlay ◽  
...  

2019 ◽  
Vol 5 (6) ◽  
pp. eaaw9562 ◽  
Author(s):  
Bowen Li ◽  
Priyesh Jain ◽  
Jinrong Ma ◽  
Josh K. Smith ◽  
Zhefan Yuan ◽  
...  

Materials that resist nonspecific protein adsorption are needed for many applications. However, few are able to achieve ultralow fouling in complex biological milieu. Zwitterionic polymers emerge as a class of highly effective ultralow fouling materials due to their superhydrophilicity, outperforming other hydrophilic materials such as poly(ethylene glycol). Unfortunately, there are only three major classes of zwitterionic materials based on poly(phosphorylcholine), poly(sulfobetaine), and poly(carboxybetaine) currently available. Inspired by trimethylamineN-oxide (TMAO), a zwitterionic osmolyte and the most effective protein stabilizer, we here report TMAO-derived zwitterionic polymers (PTMAO) as a new class of ultralow fouling biomaterials. The nonfouling properties of PTMAO were demonstrated under highly challenging conditions. The mechanism accounting for the extraordinary hydration of PTMAO was elucidated by molecular dynamics simulations. The discovery of PTMAO polymers demonstrates the power of molecular understanding in the design of new biomimetic materials and provides the biomaterials community with another class of nonfouling zwitterionic materials.


2019 ◽  
Vol 7 (14) ◽  
pp. 2242-2246 ◽  
Author(s):  
Nan Li ◽  
Xuanfeng Yue ◽  
Li Zhang ◽  
Ke Wang ◽  
Jing Zhang ◽  
...  

The existence of nonspecific protein adsorption often results in significant challenges for microfluidic devices and laboratory cultureware used in biological experiments.


Sign in / Sign up

Export Citation Format

Share Document