scholarly journals Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing

Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 520 ◽  
Author(s):  
Eric Lepowsky ◽  
Reza Amin ◽  
Savas Tasoglu

Three-dimensional (3D) printing is emerging as a method for microfluidic device fabrication boasting facile and low-cost fabrication, as compared to conventional fabrication approaches, such as photolithography, for poly(dimethylsiloxane) (PDMS) counterparts. Additionally, there is an increasing trend in the development and implementation of miniaturized and automatized devices for health monitoring. While nonspecific protein adsorption by PDMS has been studied as a limitation for reusability, the protein adsorption characteristics of 3D-printed materials have not been well-studied or characterized. With these rationales in mind, we study the reusability of 3D-printed microfluidics chips. Herein, a 3D-printed cleaning chip, consisting of inlets for the sample, cleaning solution, and air, and a universal outlet, is presented to assess the reusability of a 3D-printed microfluidic device. Bovine serum albumin (BSA) was used a representative urinary protein and phosphate-buffered solution (PBS) was chosen as the cleaning agent. Using the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) fluorescence detection method, the protein cross-contamination between samples and the protein uptake of the cleaning chip were assessed, demonstrating a feasible 3D-printed chip design and cleaning procedure to enable reusable microfluidic devices. The performance of the 3D-printed cleaning chip for real urine sample handling was then validated using a commercial dipstick assay.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4740
Author(s):  
Sergio Terranova ◽  
Filippo Costa ◽  
Giuliano Manara ◽  
Simone Genovesi

A new class of Radio Frequency IDentification (RFID) tags, namely the three-dimensional (3D)-printed chipless RFID one, is proposed, and their performance is assessed. These tags can be realized by low-cost materials, inexpensive manufacturing processes and can be mounted on metallic surfaces. The tag consists of a solid dielectric cylinder, which externally appears as homogeneous. However, the information is hidden in the inner structure of the object, where voids are created to encrypt information in the object. The proposed chipless tag represents a promising solution for anti-counterfeiting or security applications, since it avoids an unwanted eavesdropping during the reading process or information retrieval from a visual inspection that may affect other chipless systems. The adopted data-encoding algorithm does not rely on On–Off or amplitude schemes that are commonly adopted in the chipless RFID implementations but it is based on the maximization of available states or the maximization of non-overlapping regions of uncertainty. The performance of such class of chipless RFID tags are finally assessed by measurements on real prototypes.


2020 ◽  
Vol 114 (5) ◽  
pp. 370-381
Author(s):  
Derrick W. Smith ◽  
Sandra A. Lampley ◽  
Bob Dolan ◽  
Greg Williams ◽  
David Schleppenbach ◽  
...  

Introduction: The emerging technology of three-dimensional (3D) printing has the potential to provide unique 3D modeling to support specific content in science, technology, engineering, and mathematics (STEM) education, particularly chemistry. Method: Seventeen ( n = 17) students with visual impairments were provided direct instruction on chemistry atomic orbital content and allowed to use either print or tactile graphics or 3D models in rotating order. Participants were asked specific content questions based upon the atomic orbitals. Results: The students were asked two sets of comprehension questions: general and specific. Overall, students’ responses for general questions increased per iteration regardless of which manipulative was used. For specific questions, the students answered more questions correctly when using the 3D model regardless of order. When asked about their perceptions toward the manipulatives, the students preferred the 3D model over print or tactile graphics. Discussion: The findings show the potential for 3D printed materials in learning complex STEM content. Although the students preferred the 3D models, they all mentioned that a combination of manipulatives helped them better understand the material. Implications for practitioners: Practitioners should consider the use of manipulatives that include 3D printed materials to support STEM education.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Tomás A. Georgiou ◽  
Davide Asnaghi ◽  
Alva Liang ◽  
Alice M. Agogino

This paper describes the development and testing of a low-cost three-dimensional (3D) printed wearable hand exoskeleton to assist people with limited finger mobility and grip strength. The function of the presented orthosis is to support and enable light intensity activities of daily living and improve the ability to grasp and hold objects. The Sparthan Exoskeleton prototype utilizes a cable-driven design applied to individual digits with motors. The initial prototype is presented in this paper along with a preliminary evaluation of durability and performance efficacy.


2019 ◽  
Vol 25 (1) ◽  
pp. 82-87
Author(s):  
Wenqiong Su ◽  
Yulong Li ◽  
Lulu Zhang ◽  
Jiahui Sun ◽  
Shuopeng Liu ◽  
...  

Typography-like templates for polydimethylsiloxane (PDMS) microfluidic chips using a fused deposition modeling (FDM) three-dimensional (3D) printer are presented. This rapid and fast proposed scheme did not require complicated photolithographic fabrication facilities and could deliver resolutions of ~100 μm. Polylactic acid (PLA) was adopted as the material to generate the 3D-printed units, which were then carefully assembled on a glass substrate using a heat-melt-curd strategy. This craft of bonding offers a cost-effective way to design and modify the templates of microfluidic channels, thus reducing the processing time of microfluidic chips. Finally, a flexible microfluidic chip to be employed for cell-based drug screening was developed based on the modularized 3D-printed templates. The lithography-free, typography-like, 3D-printed templates create a modularized fabrication process and promote the prevalence of integrated microfluidic systems with minimal requirements and improved efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yushen Zhang ◽  
Tsun-Ming Tseng ◽  
Ulf Schlichtmann

AbstractState-of-the-art microfluidic systems rely on relatively expensive and bulky off-chip infrastructures. The core of a system—the microfluidic chip—requires a clean room and dedicated skills to be fabricated. Thus, state-of-the-art microfluidic systems are barely accessible, especially for the do-it-yourself (DIY) community or enthusiasts. Recent emerging technology—3D-printing—has shown promise to fabricate microfluidic chips more simply, but the resulting chip is mainly hardened and single-layered and can hardly replace the state-of-the-art Polydimethylsiloxane (PDMS) chip. There exists no convenient fluidic control mechanism yet suitable for the hardened single-layered chip, and particularly, the hardened single-layered chip cannot replicate the pneumatic valve—an essential actuator for automatically controlled microfluidics. Instead, 3D-printable non-pneumatic or manually actuated valve designs are reported, but their application is limited. Here, we present a low-cost accessible all-in-one portable microfluidic system, which uses an easy-to-print single-layered 3D-printed microfluidic chip along with a novel active control mechanism for fluids to enable more applications. This active control mechanism is based on air or gas interception and can, e.g., block, direct, and transport fluid. As a demonstration, we show the system can automatically control the fluid in microfluidic chips, which we designed and printed with a consumer-grade 3D-printer. The system is comparably compact and can automatically perform user-programmed experiments. All operations can be done directly on the system with no additional host device required. This work could support the spread of low budget accessible microfluidic systems as portable, usable on-the-go devices and increase the application field of 3D-printed microfluidic devices.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245206
Author(s):  
Harry Felton ◽  
Robert Hughes ◽  
Andrea Diaz-Gaxiola

This paper reports a novel, negligible-cost and open-source process for the rapid prototyping of complex microfluidic devices in polydimethylsiloxane (PDMS) using 3D-printed interconnecting microchannel scaffolds. These single-extrusion scaffolds are designed with interconnecting ends and used to quickly configure complex microfluidic systems before being embedded in PDMS to produce an imprint of the microfluidic configuration. The scaffolds are printed using common Material Extrusion (MEX) 3D printers and the limits, cost & reliability of the process are evaluated. The limits of standard MEX 3D-printing with off-the-shelf printer modifications is shown to achieve a minimum channel cross-section of 100×100 μm. The paper also lays out a protocol for the rapid fabrication of low-cost microfluidic channel moulds from the thermoplastic 3D-printed scaffolds, allowing the manufacture of customisable microfluidic systems without specialist equipment. The morphology of the resulting PDMS microchannels fabricated with the method are characterised and, when applied directly to glass, without plasma surface treatment, are shown to efficiently operate within the typical working pressures of commercial microfluidic devices. The technique is further validated through the demonstration of 2 common microfluidic devices; a fluid-mixer demonstrating the effective interconnecting scaffold design, and a microsphere droplet generator. The minimal cost of manufacture means that a 5000-piece physical library of mix-and-match channel scaffolds (100 μm scale) can be printed for ~$0.50 and made available to researchers and educators who lack access to appropriate technology. This simple yet innovative approach dramatically lowers the threshold for research and education into microfluidics and will make possible the rapid prototyping of point-of-care lab-on-a-chip diagnostic technology that is truly affordable the world over.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rommel S. Araujo ◽  
Camille R. Silva ◽  
Severino P. N. Netto ◽  
Edgard Morya ◽  
Fabricio L. Brasil

Stroke survivors can be affected by motor deficits in the hand. Robotic equipment associated with brain–machine interfaces (BMI) may aid the motor rehabilitation of these patients. BMIs involving orthotic control by motor imagery practices have been successful in restoring stroke patients' movements. However, there is still little acceptance of the robotic devices available, either by patients and clinicians, mainly because of the high costs involved. Motivated by this context, this work aims to design and construct the Hand Exoskeleton for Rehabilitation Objectives (HERO) to recover extension and flexion movements of the fingers. A three-dimensional (3D) printing technique in association with textiles was used to produce a lightweight and wearable device. 3D-printed actuators have also been designed to reduce equipment costs. The actuator transforms the torque of DC motors into linear force transmitted by Bowden cables to move the fingers passively. The exoskeleton was controlled by neuroelectric signal—electroencephalography (EEG). Concept tests were performed to evaluate control performance. A healthy volunteer was submitted to a training session with the exoskeleton, according to the Graz-BCI protocol. Ergonomy was evaluated with a two-dimensional (2D) tracking software and correlation analysis. HERO can be compared to ordinary clothing. The weight over the hand was around 102 g. The participant was able to control the exoskeleton with a classification accuracy of 91.5%. HERO project resulted in a lightweight, simple, portable, ergonomic, and low-cost device. Its use is not restricted to a clinical setting. Thus, users will be able to execute motor training with the HERO at hospitals, rehabilitation clinics, and at home, increasing the rehabilitation intervention time. This may support motor rehabilitation and improve stroke survivors life quality.


2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Marta Canta ◽  
Désirée Baruffaldi ◽  
Ignazio Roppolo ◽  
Annalisa Chiappone ◽  
Candido F. Pirri ◽  
...  

A successful application of the 3D printed materials in the biomedical field requires extensive studies to ensure their biocompatibility at every step of the process. Here, different components suitable for cell applications, including a microfluidic device, were 3D printed using common resins and a deep analysis of their biocompatibility and post printed protocols was conducted.


Sign in / Sign up

Export Citation Format

Share Document