scholarly journals “NO LOAD” resistance training increases functional capacity and muscle size in hospitalized female patients: A pilot study

Author(s):  
Matheus Barbalho ◽  
Victor Silveira Coswig ◽  
Martim Bottaro ◽  
Claudio Andre Barbosa De Lira ◽  
Mário Hebling Campos ◽  
...  

The aim of the present study was to compare the effects of resistance training performed with no external load (NLRT) versus resistance training performed with elastic bands (RTEB) on muscle hypertrophy and functional performance in hospitalized patients. Twenty hospitalized females (age, 59.05±3.2 years; height 163.6±2.5 cm; body mass 70.2±3.6 kgs) were randomly assigned to RTEB or NLRT. Both groups trained three times a week for five weeks. RTEB was performed with elastic bands, while NLRT involved maximum voluntary contractions with no external loads. Biceps brachii, triceps brachii and pectoralis muscle thickness (MT) were measured by ultrasound. Functional performance was measured by the 30s elbow flexion test. MT significantly increased in all muscles tested for both groups, with no differences between groups. Changes ranged from 14 to 38%. Functional performance significantly improved by 42.7% for NLRT and 52.1% for RTEB, with no difference between them. The present results suggest that NLRT might be an efficient, feasible and low-cost strategy to promote morphological and functional benefits in the upper limb of hospitalized patients.

2020 ◽  
Vol 15 (2) ◽  
pp. 268-277 ◽  
Author(s):  
Matheus Barbalho ◽  
Victor S. Coswig ◽  
James Steele ◽  
James P. Fisher ◽  
Jurgen Giessing ◽  
...  

Purpose: To compare the effects of different resistance training volumes on muscle performance and hypertrophy in trained men. Methods: Thirty-seven volunteers performed resistance training for 24 weeks, divided into groups that performed 5 (G5), 10 (G10), 15 (G15), and 20 (G20) sets per muscle group per week. Ten-repetition maximum (10RM) tests were performed for the bench press, lat pulldown, 45° leg press, and stiff-legged deadlift. Muscle thickness was measured using ultrasound at biceps brachii, triceps brachii, pectoralis major, quadriceps femoris, and gluteus maximus. All measurements were performed at the beginning (pre), 12 (mid), and 24 weeks (post) of training. Results: All groups showed significant increases in all 10RM tests and muscle thickness measures after 12 and 24 weeks when compared with pre (P < .05). There were no significant differences in any 10RM test or changes between G5 and G10 after 12 and 24 weeks. G5 and G10 showed significantly greater increases for 10RM than G15 and G20 for most exercises at 12 and 24 weeks. There was no group by time interaction for any muscle thickness measure. Conclusions: The results bring evidence of an inverted “U-shaped” curve for the dose–response curve for muscle strength. Although the same trend was noted for muscle hypertrophy, the results did not reach significance. Five to 10 sets per week might be sufficient for bringing about optimal gains in muscle size and strength in trained men over a 24-week period.


2010 ◽  
Vol 109 (6) ◽  
pp. 1887-1894 ◽  
Author(s):  
Charlene R. A. Magnus ◽  
Trevor S. Barss ◽  
Joel L. Lanovaz ◽  
Jonathan P. Farthing

The purpose of this study was to apply cross-education during 4 wk of unilateral limb immobilization using a shoulder sling and swathe to investigate the effects on muscle strength, muscle size, and muscle activation. Twenty-five right-handed participants were assigned to one of three groups as follows: the Immob + Train group wore a sling and swathe and strength trained ( n = 8), the Immob group wore a sling and swathe and did not strength train ( n = 8), and the Control group received no treatment ( n = 9). Immobilization was applied to the nondominant (left) arm. Strength training consisted of maximal isometric elbow flexion and extension of the dominant (right) arm 3 days/wk. Torque (dynamometer), muscle thickness (ultrasound), maximal voluntary activation (interpolated twitch), and electromyography (EMG) were measured. The change in right biceps and triceps brachii muscle thickness [7.0 ± 1.9 and 7.1 ± 2.2% (SE), respectively] was greater for Immob + Train than Immob (0.4 ± 1.2 and −1.9 ± 1.7%) and Control (0.8 ± 0.5 and 0.0 ± 1.1%, P < 0.05). Left biceps and triceps brachii muscle thickness for Immob + Train (2.2 ± 0.7 and 3.4 ± 2.1%, respectively) was significantly different from Immob (−2.8 ± 1.1 and −5.2 ± 2.7%, respectively, P < 0.05). Right elbow flexion strength for Immob + Train (18.9 ± 5.5%) was significantly different from Immob (−1.6 ± 4.0%, P < 0.05). Right and left elbow extension strength for Immob + Train (68.1 ± 25.9 and 32.2 ± 9.0%, respectively) was significantly different from the respective limb of Immob (1.3 ± 7.7 and −6.1 ± 7.8%) and Control (4.7 ± 4.7 and −0.2 ± 4.5%, P < 0.05). Immobilization in a sling and swathe decreased strength and muscle size but had no effect on maximal voluntary activation or EMG. The cross-education effect on the immobilized limb was greater after elbow extension training. This study suggests that strength training the nonimmobilized limb benefits the immobilized limb for muscle size and strength.


2020 ◽  
pp. 003151252094908
Author(s):  
Rafael A. Fujita ◽  
Marina M. Villalba ◽  
Nilson R. S. Silva ◽  
Matheus M. Pacheco ◽  
Matheus M. Gomes

Co-contraction training has demonstrated similar electromyographic (EMG) activity levels compared to conventional strength training. Since verbal instructions can increase EMG activity on target muscles during conventional exercises, the same should occur during co-contraction. In this study we analyzed whether different verbal instructions would alter the EMG activity of target muscles - biceps brachii (BB) and triceps brachii lateral head (TB) - during co-contraction training for the elbow joint. Seventeen males with experience in strength training performed a co-contraction set in two verbal instruction conditions to emphasize either elbow flexion or elbow extension. Surface electrodes were fixed over biceps brachii and triceps brachii lateral head muscles. We measured EMG mean amplitude and analyzed data with 2-way ANOVA. We found a significant interaction between muscle and verbal instruction ( p = 0.002). Post hoc tests indicated that verbal instructions ( p = 0.001) influenced the BB EMG activity (elbow flexion: M = 68.74, SD = 17.96%; elbow extension: M = 53.47, SD = 16.13%); and also showed difference ( p = 0.006) in the EMG activity between BB and TB with verbal instruction emphasizing the elbow extension (BB: M = 53.47, SD = 16.13%; TB: M = 69.18, SD = 21.79%). There was a difference in the EMG ratio of BB/TB ( p = 0.001) when focusing on elbow flexion ( M = 1.09, SD = 0.30) versus elbow extension ( M = 0.81, SD = 0.25). As verbal instruction modified the magnitude of muscle recruitment during co-contractions for elbow joint muscles, there is a clear mind-muscle connection of importance to this method of training. Also, of importance to trainers, verbal instructions seemed to affect individuals differentially.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Masatoshi Nakamura ◽  
Tomoichi Yoshida ◽  
Ryosuke Kiyono ◽  
Shigeru Sato ◽  
Nobushige Takahashi

Abstract Background The purpose of this study was to clarify whether there is a synergistic effect on muscular strength and hypertrophy when low-intensity resistance training is performed after heat stress. Methods Thirty healthy young male volunteers were randomly allocated to either the low-intensity resistance training with heat stress group or the control group. The control group performed low-intensity resistance training alone. In the low-intensity resistance training with heat stress group, a hot pack was applied to cover the muscle belly of the triceps brachii for 20 min before the training. The duration of the intervention was 6 weeks. In both groups, the training resistance was 30% of the one repetition maximum, applied in three sets with eight repetitions each and 60-s intervals. The one repetition maximum of elbow extension and muscle thickness of triceps brachii were measured before and after 6 weeks of low intensity resistance training. Results There was no significant change in the one-repetition maximum and muscle thickness in the control group, whereas there was a significant increase in the muscle strength and thickness in the low-intensity resistance training with heat stress group. Conclusion The combination of heat stress and low-intensity resistance training was an effective method for increasing muscle strength and volume. Trial registration University Hospital Medical Information Network Clinical Trials Registry (UMIN000036167; March 11, 2019).


2009 ◽  
Vol 102 (3) ◽  
pp. 1420-1429 ◽  
Author(s):  
Gilles Hoffmann ◽  
Derek G. Kamper ◽  
Jennifer H. Kahn ◽  
William Z. Rymer ◽  
Brian D. Schmit

Neural coupling of proximal and distal upper limb segments may have functional implications in the recovery of hemiparesis after stroke. The goal of the present study was to investigate whether the stretch reflex response magnitude of spastic finger flexor muscles poststroke is influenced by sensory input from the shoulder and the elbow and whether reflex coupling of muscles throughout the upper limb is altered in spastic stroke survivors. Through imposed extension of the metacarpophalangeal (MCP) joints, stretch of the relaxed finger flexors of the four fingers was imposed in 10 relaxed stroke subjects under different conditions of proximal sensory input, namely static arm posture (3 different shoulder/elbow postures) and electrical stimulation (surface stimulation of biceps brachii or triceps brachii, or none). Fast (300°/s) imposed stretch elicited stretch reflex flexion torque at the MCP joints and reflex electromyographic (EMG) activity in flexor digitorum superficialis. Both measures were greatest in an arm posture of 90° of elbow flexion and neutral shoulder position. Biceps stimulation resulted in greater MCP stretch reflex flexion torque. Fast imposed stretch also elicited reflex EMG activity in nonstretched heteronymous upper limb muscles, both proximal and distal. These results suggest that in the spastic hemiparetic upper limb poststroke, sensorimotor coupling of proximal and distal upper limb segments is involved in both the increased stretch reflex response of the finger flexors and an increased reflex coupling of heteronymous muscles. Both phenomena may be mediated through changes poststroke in the spinal reflex circuits and/or in the descending influence of supraspinal pathways.


Author(s):  
João Pedro Nunes ◽  
Jeferson L. Jacinto ◽  
Alex S. Ribeiro ◽  
Jerry L. Mayhew ◽  
Masatoshi Nakamura ◽  
...  

Muscular strength and hypertrophy following resistance training may be obtained in different degrees depending on the approach performed. This study was designed to compare the responses of the biceps brachii to two preacher curl exercises, one performed on a cable-pulley system (CAB; in which a greater torque was applied during the exercise when elbows were flexed and biceps shortened) and one performed with a barbell (BAR; in which greater torque was applied when the elbows were extended and biceps stretched). Thirty-five young adults (CAB: 13 men, 5 women; BAR: 12 men, 5 women; age = 24 ± 5 years) performed a resistance training program three times per week for 10 weeks, with preacher curl exercises performed in three sets of 8–12 repetitions. Outcomes measured included elbow flexion peak isokinetic torque at angles of 20°, 60°, and 100° (considering 0° as elbow extended), and biceps brachii thickness (B-mode ultrasound). Following the training period, there were significant increases for both groups in elbow flexion peak torque at the 20° (CAB: 30%; BAR = 39%; p = 0.046), 60° (CAB: 27%; BAR = 32%; p = 0.874), and 100° (CAB: 17%; BAR = 19%; p = 0.728), and biceps brachii thickness (CAB: 7%; BAR = 8%; p = 0.346). In conclusion, gains in muscular strength were greater for BAR only at longer muscle length, whereas hypertrophy was similar regardless of whether torque emphasis was carried out in the final (CAB) or initial (BAR) degrees of the range of motion of the preacher curl in young adults.


1993 ◽  
Vol 70 (3) ◽  
pp. 947-960 ◽  
Author(s):  
J. C. Jamison ◽  
G. E. Caldwell

1. Twenty normal subjects performed a series of isometric elbow flexion (F) maximum voluntary contractions (MVC) while simultaneously maintaining one of seven targeted torque levels in the supination/pronation (S/P) degree of freedom (df). Experimental measures were torque in both df s and surface electromyograms (EMG) from brachioradialis (BRAD), triceps brachii (TB), biceps brachii (BB) short head (BBSH), and a medial and lateral site on biceps brachii long head (MED BB and LAT BB). Task effects were tested for significance using analysis of covariance models for the torque and EMG variables. Polynomial multiple regression models were developed for significant effects. The synergism among muscles was examined by statistically testing the EMG data for differing responses to the S/P torque changes across the five electrode sites. 2. The magnitude of the S/P target torque had a statistically significant effect on flexion MVC (F MVC) torque. Changes in S/P torque markedly influenced the F MVC torque magnitude, with as much as a 25% F torque decrement relative to an F MVC with an S/P torque target of 0. This suggests that the second df task affects some aspect of joint function that causes the CNS to reduce F torque capacity. 3. The S/P torque had a significant effect on EMG amplitude at all electrode sites other than TB. The EMG amplitude at the BB sites responded strongly to both F and S/P torque changes. The F+S tasks tended to facilitate BB EMG, whereas the F+P tasks tended to diminish it. The BRAD EMG, although primarily related to F torque amplitude, also was influenced by the S/P torque changes. The trends for BRAD EMG were opposite those for the BB in that BRAD EMG tended to be enhanced by the F+P tasks and reduced by the F+S tasks. 4. The synergistic pattern of stimulation (i.e., the relationship among the 5 EMG amplitude measures) was also significantly influenced by the S/P df task. Significant differences in the EMG behavior between BBSH and LAT BB were detected; however, no statistically significant differences were found between LAT BB and MED BB. The EMG behaviors at the BRAD and TB electrode sites were significantly different from those at the BB sites. 5. These inversely related responses from the BB and BRAD stress the importance of understanding the relationship between muscular activity and the function of muscles in more than one df. This finding further suggests that the synergistic relationships between muscles are dynamically related to task in all applicable dfs. It is suggested that this dynamic synergism is a natural consequence of the redundant musculoskeletal system.(ABSTRACT TRUNCATED AT 400 WORDS)


Sports ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 224
Author(s):  
Andrea Melani ◽  
Giuliana Gobbi ◽  
Daniela Galli ◽  
Cecilia Carubbi ◽  
Elena Masselli ◽  
...  

Background: The bench press exercise (BP) is commonly practiced in both recreational and professional training. The weight is lowered from a position where the elbows are at a 90° angle at the start and <90° at the end of eccentric phase, and then returned to the elbows extended position. In order to focus the exercise more on the triceps brachii (TB) rather than the pectoralis major (PM), the inter-handle distance (IHD) is decreased diminishing the involvement of the PM in favor of the TB. Purpose: To improve performance of the exercise by reducing force dissociation and transmitting 100% of the external load to the muscle tissue we propose a prototype of the barbell with a bar on which two sleeves are capable of sliding. The dynamic modifications of the IHD keep the elbow flexion angle constant at 90°. Results: Analysis of the inter-handle distance (IHD) signals of the upper body muscles showed a marked increase in muscle activity using the experimental barbell for the PM (19.5%) and for the biceps brachii (173%). Conclusions: The experimental barbell increased the muscle activity typical of the bench press exercise, obtaining the same training induction with a lower load and consequently preventing articular stress.


2020 ◽  
Vol 45 (5) ◽  
pp. 463-470 ◽  
Author(s):  
Scott J. Dankel ◽  
Zachary W. Bell ◽  
Robert W. Spitz ◽  
Vickie Wong ◽  
Ricardo B. Viana ◽  
...  

The objective of this study was to determine differences in 2 distinct resistance training protocols and if true variability can be detected after accounting for random error. Individuals (n = 151) were randomly assigned to 1 of 3 groups: (i) a traditional exercise group performing 4 sets to failure; (ii) a group performing a 1-repetition maximum (1RM) test; and (iii) a time-matched nonexercise control group. Both exercise groups performed 18 sessions of elbow flexion exercise over 6 weeks. While both training groups increased 1RM strength similarly (∼2.4 kg), true variability was only present in the traditional exercise group (true variability = 1.80 kg). Only the 1RM group increased untrained arm 1RM strength (1.5 kg), while only the traditional group increased ultrasound measured muscle thickness (∼0.23 cm). Despite these mean increases, no true variability was present for untrained arm strength or muscle hypertrophy in either training group. In conclusion, these findings demonstrate the importance of taking into consideration the magnitude of random error when classifying differential responders, as many studies may be classifying high and low responders as those who have the greatest amount of random error present. Additionally, our mean results demonstrate that strength is largely driven by task specificity, and the crossover effect of strength may be load dependent. Novelty Many studies examining differential responders to exercise do not account for random error. True variability was present in 1RM strength gains, but the variability in muscle hypertrophy and isokinetic strength changes could not be distinguished from random error. The crossover effect of strength may differ based on the protocol employed.


1993 ◽  
Vol 74 (6) ◽  
pp. 2740-2744 ◽  
Author(s):  
Y. Kawakami ◽  
T. Abe ◽  
T. Fukunaga

Muscle-fiber pennation angles were measured in vivo with the use of ultrasonography to investigate the relationship between fiber pennation and muscle size for 32 male subjects (from untrained subjects to highly trained bodybuilders). From the image of a B-mode ultrasonogram, fiber pennation angles and thickness of triceps brachii were determined, the former as angles between echoes from the interspaces of fascicles and from the aponeurosis of long and medial heads of triceps and the latter as the distance between the fat-muscle and muscle-bone interfaces. The pennation angles were in the range of 15 and 53 degrees for the long head and 9 to 26 degrees for the medial head, which were similar to or greater than the published and the present data on human cadavers. Significant differences were observed between normal subjects and bodybuilders in muscle thickness and pennation angles (P < 0.01), and there were significant correlations between muscle thickness and pennation angles for both long (r = 0.884) and medial (r = 0.833) heads of triceps, suggesting that muscle hypertrophy involves an increase in fiber pennation angles.


Sign in / Sign up

Export Citation Format

Share Document