scholarly journals Permanent cover for soil and water conservation in mechanized vineyards: A study case in Piedmont, NW Italy

2020 ◽  
Vol 15 (4) ◽  
pp. 323-331
Author(s):  
Giorgio Capello ◽  
Marcella Biddoccu ◽  
Eugenio Cavallo

Vineyards’ soils are especially threatened by the risk of soil compaction and soil erosion, with negative consequences for wine production and provisioning of ecosystem services. The adopted inter-rows soil management influences the response of vineyard to different types of rainfall events, in terms of runoff and soil erosion. Actually, the use of cover crops in vineyards is widely considered as an effective measure for conservation of water and soil. A 3-years study was carried out in Piedmont (NW Italy) to evaluate the effectiveness of grass cover as a soil water conservation measure, compared with tillage, and particularly the influence of different types of rainfall events and tractor traffic in determining hydrological and erosive response of the vineyard. During the investigation period (November 2016 - December 2019), climate variables, runoff, and soil losses were continuously monitored along with vineyard management operations. Very different yearly precipitation characterized the observed period, including the driest and wettest year in the last 20 years. Runoff and soil erosion caused by different types of rainfall events (long-lasting, intense and normal) in two vineyard’s plots managed with permanent grass cover and tillage, respectively, have been compared. In addition, the influence of the number of tractor traffic was taken into account. Runoff volume was principally affected by soil management, while sediment yield was influenced by the type of event. Both were higher in the tilled plot than in the grassed one, for all types of events, even if differences were not always significant. Grass cover reduced by 65% the runoff, with the highest efficiency during intense events. Soil losses were reduced on average by 72%, with 74% efficiency during the most erosive intense events and the lowest protection (56%) during long-lasting rainfall. Moreover, the response of grass cover plot was less influenced by traffication. The study demonstrates the efficiency of grass cover in reducing water and soil losses also during extreme events, that are predicted to be more frequent in the climate change scenario.

2020 ◽  
Vol 12 (5) ◽  
pp. 2077 ◽  
Author(s):  
Chunfeng Jia ◽  
Baoping Sun ◽  
Xinxiao Yu ◽  
Xiaohui Yang

Vegetation plays an important role in reducing soil erosion. By exploring the allocation and coverage of different types of vegetation, we can improve management practices that can significantly reduce soil erosion. In this experiment, we study runoff and sediment losses on a shrub-grass planted, grass planted, and bare slope under different rainfall intensities. Results showed that the runoff generation time for the three subgrade types decreased as rainfall intensity increased (p < 0.05). The slopes planted with either grass or shrub-grass were able to effectively delay runoff generation. As rainfall intensity increased, the runoff amount increased for all treatments, with runoff in the bare slope increasing the most. The runoff reduction rate from the shrub-grass slope ranged from 54.20% to 63.68%, while the reduction rate from the slope only planted with grass ranged from 38.59% to 55.37%. The sediment yield from the bare slope increased from 662.66 g/m2 (15 mm/h) to 2002.95 g/m2 (82 mm/h) with increasing rainfall intensity in the plot. When compared with the bare slope, both the shrub-grass and planted grass slopes were able to retain an additional 0.9 g/m2 to 4.9 g/m2 of sediment, respectively. An accurate relationship between rainfall intensity, sloped vegetation types, and runoff reduction rate was obtained by regression analysis and validated. These results can provide a reference for improving soil and water conservation via improved vegetation allocation on a sloped roadbed.


2014 ◽  
Vol 38 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Pedro Luiz Terra Lima ◽  
Marx Leandro Naves Silva ◽  
Nilton Curi ◽  
John Quinton

Adequate soil management can create favorable conditions to reduce erosion and water runoff, consequently increase water soil recharge. Among management systems intercropping is highly used, especially for medium and small farmers. It is a system where two or more crops with different architectures and vegetative cycles are explored simultaneously at the same location. This research investigated the effects of maize intercropped with jack bean on soil losses due to water erosion, estimate C factor of Universal Soil Losses Equation (USLE) and how it can be affected by soil coverage. The results obtained also contribute to database generation, important to model and estimate soil erosion. Total soil loss by erosion caused by natural rain, at Lavras, Minas Gerais, Brazil, were: 4.20, 1.86, 1.38 and 1.14 Mg ha-1, respectively, for bare soil, maize, jack bean and the intercropping of both species, during evaluated period. Values of C factor of USLE were: 0.039, 0.054 and 0.077 Mg ha Mg-1 ha-1 for maize, jack bean and intercropping between both crops, respectively. Maize presented lower vegetation cover index, followed by jack beans and consortium of the studied species. Intercropping between species showed greater potential on soil erosion control, since its cultivation resulted in lower soil losses than single crops cultivation, and this aspect is really important for small and medium farmers in the studied region.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2118 ◽  
Author(s):  
Giorgio Capello ◽  
Marcella Biddoccu ◽  
Stefano Ferraris ◽  
Eugenio Cavallo

Soil erosion is affected by rainfall temporal patterns and intensity variability. In vineyards, machine traffic is implemented with particular intensity from late spring to harvest, and it is responsible for soil compaction, which likely affects soil hydraulic properties, runoff, and soil erosion. Additionally, the hydraulic and physical properties of soil are highly influenced by vineyards’ inter-rows soil management. The effects on soil compaction and both hydrological and erosional processes of machine traffic were investigated on a sloping vineyard with different inter-row soil managements (tillage and permanent grass cover) in the Alto Monferrato area (Piedmont, NW Italy). During the investigation (November 2016–October 2018), soil water content, rainfall, runoff, and soil erosion were continuously monitored. Field-saturated hydraulic conductivity, soil penetration resistance, and bulk density were recorded periodically in portions of inter-rows affected and not affected by the machine traffic. Very different yearly precipitation characterized the observed period, leading to higher bulk density and lower infiltration rates in the wetter year, especially in the tilled vineyard, whereas soil penetration resistance was generally higher in the grassed plot and in drier conditions. In the wet year, management with grass cover considerably reduced runoff (−76%) and soil loss (−83%) compared to tillage and in the dry season. Those results highlight the need to limit the tractor traffic, in order to reduce negative effects due to soil compaction, especially in tilled inter-rows.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shanshan Liu ◽  
Tianling Qin ◽  
Xizhi Lv ◽  
Xuan Shi ◽  
Biqiong Dong ◽  
...  

Water and soil losses from sloping farmlands potentially contribute to water eutrophication and land degradation. However, few studies explored the combined effects of ridge direction and ridge width on surface runoff and soil losses of sloping farmlands. Twenty-seven experimental plots (8 m long and 4 m wide) with nine treatments (three ridge direction: cross ridge, longitudinal ridge, and oblique ridge; and three ridge width: 40, 60, and 80 cm) were adopted under natural rainfall conditions for two years in the Luanhe River Basin of China. Results indicated that ridge direction had significant effects on runoff and sediment yield (p &lt; 0.05). The ridge width had no significant effect on runoff and sediment yield. No significant interaction effect was found between ridge direction and width on runoff and sediment yield of the sloping farmland based on statistical analyses. Compared with cross-ridge (CR) tillage and oblique-ridge (OR) tillage, longitudinal-ridge (LR) tillage significantly decreased runoff by 78.9% and 64.9% and soil losses by 88.2 and 83.5%, respectively (p &lt; 0.05). The effects of ridge directions on runoff and sediment yield were related to rainfall grade. When the rainfall grade reached rainstorm, the runoff yield under CR, LR, and SR had significant differences (p &lt; 0.05). The runoff under LR and OR treatment was 5.16 and 3.3 times, respectively, of that under CR. When the rainfall level was heavy rain or rainstorm, the sediment yield under LR was significantly greater than that under CR. The sediment yield was 13.45 times of that under CR. Cross-ridge tillage with a ridge width of 40 cm is an optimally effective measure of soil and water conservation on sloping farmland in arid and semiarid regions of China.


2015 ◽  
Vol 7 (4) ◽  
pp. 3511-3540 ◽  
Author(s):  
A. Adugna ◽  
A. Abegaz ◽  
A. Cerdà

Abstract. Soil erosion is the main driver of land degradation in Ethiopia, and in the whole region of East Africa. This study was conducted at the Northeast Wollega in West Ethiopia to estimate the soil losses by means of the Revised Universal Soil Loss Equation (RUSLE). The purpose of this paper is to identify erosion spot areas and target locations for appropriate development of soil and water conservation measures. Fieldwork and household survey were conducted to identify major determinants of soil erosion control. Six principal factors were used to calculate soil loss per year, such as rainfallerosivity, soil erodiblity, slope length, slope steepness, crop management and erosion-control practices. The soil losses have shown spatio-temporal variations that range from 4.5 Mg ha-1 yr-1 in forest to 65.9 Mg ha-1 yr-1 in cropland. Results from the analysis of stepwise multiple linear regression show that sustainable soil erosion control are determined byknowledge of farmers about soil conservation, land tenure security and off-farm income at community level. Thus, policy aim at keeping land productivity will need to focus on terracing, inter-cropping and improved agro-forestry practices.


Author(s):  
Imlikumba . ◽  
Parappagoudra Mahesh ◽  
BA Lohith ◽  
K Singha ◽  
S Lalravi

Panchakarma is a fruitful measure and its extensive efficacies are classified in different dimensions to cure different types of complicated diseases. Vamana, Virechana, Niruha, Anuvasana and Nasya are the five procedures and subsequently even Vamana, Virechana, Basti, Nasya and Rakta Mokshana are broadly termed as Panchakarma in day to day practices.The new diseases are evolving with intense gravity and therefore to combat those, Panchakarma is a very effective measure. In present era competition and advancement have led to hectic and stressful life, man has eventually forgotten the absolute enjoyment and solitary affection of nature and as a result is facing many health problems. Gridhrasi is no exception, it is correlated to sciatica in modern science where low back ache radiating to toes in the lateral aspect of the thigh associated with stiffness is the main complaint.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


Sign in / Sign up

Export Citation Format

Share Document