scholarly journals Phylogeny, Genetic Relationships and Population Structure of Five Italian Local Chicken Breeds

2013 ◽  
Vol 12 (3) ◽  
pp. e66 ◽  
Author(s):  
Simone Ceccobelli ◽  
Piera Di Lorenzo ◽  
Hovirag Lancioni ◽  
Cesare Castellini ◽  
Luis V. Monteagudo Ibáñez ◽  
...  
2011 ◽  
Vol 96 (2-3) ◽  
pp. 111-119 ◽  
Author(s):  
Emiliano Lasagna ◽  
Matteo Bianchi ◽  
Simone Ceccobelli ◽  
Vincenzo Landi ◽  
Amparo Martínez Martínez ◽  
...  

Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 699-713
Author(s):  
Noah A Rosenberg ◽  
Terry Burke ◽  
Kari Elo ◽  
Marcus W Feldman ◽  
Paul J Freidlin ◽  
...  

Abstract We tested the utility of genetic cluster analysis in ascertaining population structure of a large data set for which population structure was previously known. Each of 600 individuals representing 20 distinct chicken breeds was genotyped for 27 microsatellite loci, and individual multilocus genotypes were used to infer genetic clusters. Individuals from each breed were inferred to belong mostly to the same cluster. The clustering success rate, measuring the fraction of individuals that were properly inferred to belong to their correct breeds, was consistently ~98%. When markers of highest expected heterozygosity were used, genotypes that included at least 8–10 highly variable markers from among the 27 markers genotyped also achieved >95% clustering success. When 12–15 highly variable markers and only 15–20 of the 30 individuals per breed were used, clustering success was at least 90%. We suggest that in species for which population structure is of interest, databases of multilocus genotypes at highly variable markers should be compiled. These genotypes could then be used as training samples for genetic cluster analysis and to facilitate assignments of individuals of unknown origin to populations. The clustering algorithm has potential applications in defining the within-species genetic units that are useful in problems of conservation.


2021 ◽  
Author(s):  
Varun Hiremath ◽  
Kanwar Pal Singh ◽  
Neelu Jain ◽  
Kishan Swaroop ◽  
Pradeep Kumar Jain ◽  
...  

Abstract Genetic diversity and structure analysis using molecular markers is necessary for efficient utilization and sustainable management of gladiolus germplasm. Genetic analysis of gladiolus germplasm using SSR markers is largely missing due to scarce genomic information. In the present investigation, we report 66.66% cross transferability of Gladiolus palustris SSRs whereas 48% of Iris EST-SSRs were cross transferable across the gladiolus genotypes used in the study. A total of 17 highly polymorphic SSRs revealed a total 58 polymorphic loci ranging from two to six in each locus with an average of 3.41 alleles per marker. PIC values ranged from 0.11 to 0.71 with an average value of 0.48. Four SSRs were selectively neutral based on Ewens-Watterson test. Analysis of genetic structure of 84 gladiolus genotypes divided whole germplasm into two subpopulations. 35 genotypes were assigned to subpopulation 1 whereas 37 to subpopulation 2 and rest of the genotypes recorded as admixture. Analysis of molecular variance indicated maximum variance (53.59%) among individuals within subpopulations whereas 36.55% of variation observed among individuals within total population. Least variation (9.86%) was noticed between two subpopulations. Moderate (FST = 0.10) genetic differentiation of two subpopulations was observed. Grouping pattern of population structure was consistent with UPGMA dendrogram based on simple matching dissimilarity coefficient (ranged from 01.6 to 0.89) and PCoA. Genetic relationships assessed among the genotypes of respective clusters assist the breeders in selecting desirable parents for crossing. SSR markers from present study can be utilized for cultivar identification, conservation and sustainable utilization of gladiolus genotypes for crop improvement.


2020 ◽  
Author(s):  
Brenda G. Díaz ◽  
Maria I. Zucchi ◽  
Alessandro. Alves-Pereira ◽  
Caléo P. de Almeida ◽  
Aline C. L. Moraes ◽  
...  

AbstractAcrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of seven species of Acrocomia including 117 samples of A. aculeata covering a wide geographical area of occurrence, using single nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS). The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2257
Author(s):  
Tlou Grace Manyelo ◽  
Letlhogonolo Selaledi ◽  
Zahra Mohammed Hassan ◽  
Monnye Mabelebele

There has been a research gap in the genetic, physiological, and nutritional aspects of indigenous chickens of Africa over the past decade. These chickens are known to be economically, socially, and culturally important to the people of Africa, especially those from marginalised communities. Although they are associated with poor productivity in terms of the number of eggs laid, most consumers prefer their flavoursome meat. Several local chickens have been classified into breeds or ecotypes, but many remain unidentified and are facing extinction. To prevent this, the Food and Agriculture Organization has launched an indigenous poultry conservation programme. In addition, the Agricultural Research Council in South Africa has established a programme to protect four local chicken breeds. The purpose of this review is to provide a detailed understanding of the description, uses and conservation methods of local chicken breeds of Africa. Several studies have been conducted on the nutritional requirements of local chickens, but the results were inconclusive and contradictory. This review concludes that local chickens play a significant role in improving livelihoods, and strategies to preserve and sustain them must be intensified.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2074
Author(s):  
Ayano Hata ◽  
Atsushi Takenouchi ◽  
Keiji Kinoshita ◽  
Momomi Hirokawa ◽  
Takeshi Igawa ◽  
...  

Japanese indigenous chickens have a long breeding history, possibly beginning 2000 years ago. Genetic characterization of Japanese indigenous chickens has been performed using mitochondrial D-loop region and microsatellite DNA markers. Their phylogenetic relationships with chickens worldwide and genetic variation within breeds have not yet been examined. In this study, the genetic characteristics of 38 Japanese indigenous chicken breeds were assessed by phylogenetic analyses of mitochondrial D-loop sequences compared with those of indigenous chicken breeds overseas. To evaluate the genetic relationships among Japanese indigenous chicken breeds, a STRUCTURE analysis was conducted using 27 microsatellite DNA markers. D-loop sequences of Japanese indigenous chickens were classified into five major haplogroups, A–E, among 15 haplogroups found in chickens worldwide. The haplogroup composition suggested that Japanese indigenous chickens originated mainly from China, with some originating from Southeast Asia. The STRUCTURE analyses revealed that Japanese indigenous chickens are genetically differentiated from chickens overseas; Japanese indigenous chicken breeds possess distinctive genetic characteristics, and Jidori breeds, which have been reared in various regions of Japan for a long time, are genetically close to each other. These results provide new insights into the history of chickens around Asia in addition to novel genetic data for the conservation of Japanese indigenous chickens.


2009 ◽  
Vol 54 (No. 10) ◽  
pp. 468-474 ◽  
Author(s):  
S. Kusza ◽  
E. Gyarmathy ◽  
J. Dubravska ◽  
I. Nagy ◽  
A. Jávor ◽  
...  

In this study genetic diversity, population structure and genetic relationships of Tsigai populations in Slovakia were investigated using microsatellite markers. Altogether 195 animals from 12 populations were genotyped for 16 microsatellites. 212 alleles were detected on the loci. The number of identified alleles per locus ranged from 11 to 35. In the majority of the populations heterozygosity deficiency and potential risks of inbreeding could be determined. High values of <I>F</I><sub>ST</sub> (0.133) across all the loci revealed a substantial degree of population differentiation. The estimation of genetic distance value showed that the Slovak Vojin population was the most different from the other populations. The 12 examined populations were able to group into 4 clusters. With this result our aim is to help the Slovak sheep breeders to establish their own mating system, to avoid genetic loss and to prevent diversity of Tsigai breed in Slovakia.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0238849
Author(s):  
Nora Palinkas-Bodzsar ◽  
Nikoletta Sztan ◽  
Tamas Molnar ◽  
Andras Hidas

Sign in / Sign up

Export Citation Format

Share Document