scholarly journals Distribution of subfossil chironomids (Diptera, Chironomidae) along a water depth gradient in the shallow Lake Spore, northern Poland

2019 ◽  
Vol 78 (3) ◽  
Author(s):  
Krzysztof Pleskot ◽  
Mónika Tóth ◽  
Karina Apolinarska

Subfossil chironomid (Diptera, Chironomidae) remains are often used as indicators of lake level changes in palaeolimnological studies. However, their usefulness as a water depth proxy can vary between the sites, depending on the lake morphology, mode of taphonomic processes or amplitude of past water level fluctuations, among other factors. In this study, we have examined the distribution of subfossil chironomids in the shallow Lake Spore (northern Poland) to assess the influence of water depth on the fauna. Our aim was to evaluate the site-specific utility of subfossil chironomids for lake level reconstruction at Lake Spore. The subfossil chironomid assemblages in Lake Spore have heterogeneous distribution, suggesting they are predominately composed of remains deposited close to the sampling location. A strong relationship between the water depth and the chironomids is marked by the 25.12% variance explained by water depth in the taxonomic data. Moreover, according to generalized linear models (GLMs) out of 44 dominant taxa, 12 have significant relationships with water depth. However, the sensitivity of our chironomid fauna to water depth changes is not continuous along the entire depth gradient. The most abrupt assemblage change occurs at 2.6–3.7 m water depth, in proximity to the depth where macrophytes become less dense and finally disappear. We conclude that, despite these strong chironomid-water depth relationships, only major water level fluctuations can be satisfactorily reconstructed due to the limited turnover rates of the fauna along a depth gradient and relatively small amplitude of the lake level variations characteristic for East-Central Europe.

2021 ◽  
Author(s):  
Daniel Ariztegui ◽  
Clément Pollier ◽  
Andrés Bilmes

<p>Lake levels in hydrologically closed-basins are very sensitive to climatically and/or anthropogenically triggered environmental changes. Their record through time can provide valuable information to forecast changes that can have substantial economical and societal impact.</p><p>Increasing precipitation in eastern Patagonia (Argentina) have been documented following years with strong El Niño (cold) events using historical and meteorological data. Quantifying changes in modern lake levels allow determining the impact of rainfall variations while contributing to anticipate the evolution of lacustrine systems over the next decades with expected fluctuations in ENSO frequencies. Laguna Carrilaufquen Grande is located in the intermontane Maquinchao Basin, Argentina. Its dimension fluctuates greatly, from 20 to 55 km<sup>2</sup> water surface area and an average water depth of 3 m. Several well-preserved gravelly beach ridges witness rainfall variations that can be compared to meteorological data and satellite images covering the last ~50 years. Our results show that in 2016 lake level was the lowest of the past 44 years whereas the maximum lake level was recorded in 1985 (+11.8 m above the current lake level) in a position 1.6 km to the east of the present shoreline. A five-years moving average rainfall record of the area was calculated smoothing the extreme annual events and correlated to the determined lake level fluctuations. The annual variation of lake levels was up to 1.2 m (e.g. 2014) whereas decadal variations related to humid-arid periods for the interval 2002 to 2016 were up to 9.4 m. These data are consistent with those from other monitored lakes and, thus, our approach opens up new perspectives to understand the historical water level fluctuations of lakes with non-available monitoring data.</p><p> </p><p>Laguna de los Cisnes in the Chilean section of the island of Tierra del Fuego, is a closed-lake presently divided into two sections of 2.2 and 11.9 km<sup>2</sup>, respectively. These two water bodies were united in the past forming a single larger lake. The lake level was  ca. 4 m higher than today as shown by clear shorelines and the outcropping of large Ca-rich microbialites. Historical data, aerial photographs and satellite images indicate that the most recent changes in lake level are the result of a massive decrease of water input during the last half of the 20<sup>th</sup> century triggered by an indiscriminate use of the incoming water for agricultural purposes. The spectacular outcropping of living and fossil microbialites is not only interesting from a scientific point of view but has also initiated the development of the site as a local touristic attraction. However, if the use of the incoming water for agriculture in the catchment remains unregulated the lake water level might drop dangerously and eventually the lake might fully desiccate.</p><p>These two examples illustrate how recent changes in lake level can be used to anticipate the near future of lakes. They show that ongoing climate changes along with the growing demand of natural resources have already started to impact lacustrine systems and this is likely to increase in the decades to come.</p>


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1056 ◽  
Author(s):  
Songpu Shang ◽  
Songhao Shang

The determination of the rational minimum ecological water level is the base for the protection of ecosystems in shrinking lakes and wetlands. Based on the lake surface area method, a simplified lake surface area method was proposed to define the minimum ecological lake level from the lake level-logarithm of the surface area curve. The curve slope at the minimum ecological lake level is the ratio of the maximum lake storage to the maximum surface area. For most practical cases when the curve cannot be expressed as a simple analytical function, the minimum ecological lake level can be determined numerically using the weighted sum method for an equivalent multi-objective optimization model that balances ecosystem protection and water use. This method requires fewer data of lake morphology and is simple to compute. Therefore, it is more convenient to use this method in the assessment of the ecological lake level. The proposed method was used to determine the minimum ecological water level for one freshwater lake, one saltwater lake, and one wetland in China. The results can be used in the lake ecosystem protection planning and the rational use of water resources in the lake or wetland basins.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2590
Author(s):  
Qisheng Li ◽  
Yanqing Han ◽  
Kunquan Chen ◽  
Xiaolong Huang ◽  
Kuanyi Li ◽  
...  

Water level is one of the most important factors affecting the growth of submerged macrophytes in aquatic ecosystems. The rosette plant Vallisneria natans and the erect plant Hydrilla verticillata are two common submerged macrophytes in lakes of the middle and lower reaches of the Yangtze River, China. How water level fluctuations affect their growth and competition is still unknown. In this study, three water depths (50 cm, 150 cm, and 250 cm) were established to explore the responses in growth and competitive patterns of the two plant species to water depth under mixed planting conditions. The results show that, compared with shallow water conditions (50 cm), the growth of both submerged macrophytes was severely suppressed in deep water depth (250 cm), while only V. natans was inhibited under intermediate water depth (150 cm). Moreover, the ratio of biomass of V. natans to H. verticillata gradually increased with increasing water depth, indicating that deep water enhanced the competitive advantage of V. natans over H.verticillata. Morphological adaptation of the two submerged macrophytes to water depth was different. With increasing water depth, H. verticillata increased its height, at the cost of reduced plant numbers to adapt to poor light conditions. A similar strategy was also observed in V. natans, when water depth increased from 50 cm to 150 cm. However, both the plant height and number were reduced at deep water depth (250 cm). Our study suggests that water level reduction in lake restoration efforts could increase the total biomass of submerged macrophytes, but the domination of key plants, such as V. natans, may decrease.


1997 ◽  
Vol 15 (11) ◽  
pp. 1489-1497 ◽  
Author(s):  
M. Kadioğlu ◽  
Z. Şen ◽  
E. Batur

Abstract. Global warming resulting from increasing greenhouse gases in the atmosphere and the local climate changes that follow affect local hydrospheric and biospheric environments. These include lakes that serve surrounding populations as a fresh water resource or provide regional navigation. Although there may well be steady water-quality alterations in the lakes with time, many of these are very much climate-change dependent. During cool and wet periods, there may be water-level rises that may cause economic losses to agriculture and human activities along the lake shores. Such rises become nuisances especially in the case of shoreline settlements and low-lying agricultural land. Lake Van, in eastern Turkey currently faces such problems due to water-level rises. The lake is unique for at least two reasons. First, it is a closed basin with no natural or artificial outlet and second, its waters contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source. Consequently, the water level fluctuations are entirely dependent on the natural variability of the hydrological cycle and any climatic change affects the drainage basin. In the past, the lake-level fluctuations appear to have been rather systematic and unrepresentable by mathematical equations. Herein, monthly polygonal climate diagrams are constructed to show the relation between lake level and some meteorological variables, as indications of significant and possible climatic changes. This procedure is applied to Lake Van, eastern Turkey, and relevant interpretations are presented.


1990 ◽  
Vol 68 (5) ◽  
pp. 1007-1014 ◽  
Author(s):  
Christopher Neill

Nitrogen and phosphorus fertilizers were added over two growing seasons to marshes dominated by whitetop grass (Scolochloa festucacea) or cattail (Typha glauca) in a prairie lacustrine marsh to assess nutrient limitation and the interaction of nutrient limitation with water depth. For each species, stands were selected at the deep and shallow extremes of its water depth range. Water levels were high during the first year of fertilization and low during the second year, exposing the fertilized stands to a variety of water depths. Nitrogen limited growth in whitetop and cattail marshes. Water level, by controlling whether the soil was flooded or the water table was below the soil surface, affected growth and the degree of nitrogen limitation. In whitetop marshes, nitrogen increased biomass more when the soil was flooded or when standing water was deeper and in cattail marshes, it increased biomass more under intermediate water depths (approximately 0–20 cm) than under more deeply flooded (20–40 cm) or dry conditions. Nitrogen reduced biomass in whitetop marshes the second year, apparently because growth was inhibited by fallen litter from the previous year. Nitrogen did not limit cattail marsh biomass in the driest locations during a year of low water levels. Phosphorus caused a small increase in growth of both species after 2 years. Changes of nitrogen limitation with flooding suggest that annual water level fluctuations, by creating alternating flooded and dry conditions, may influence the primary production of emergent macrophytes through effects on nitrogen cycling.


Limnologica ◽  
2015 ◽  
Vol 55 ◽  
pp. 13-20 ◽  
Author(s):  
Francis S. Magbanua ◽  
Nikki Yvette B. Mendoza ◽  
Christine Jewel C. Uy ◽  
Christoph D. Matthaei ◽  
Perry S. Ong

Author(s):  
Jacques Walumona ◽  
Boaz Arara ◽  
Cyprian Ogombe ◽  
James Murakaru ◽  
Phillip Raburu ◽  
...  

The study was conducted in Lake Baringo and determined quantitative relationships between water level changes, water quality, and fishery production for informed lake basin management. Long-term (2008 to 2020) data on water level, water quality, and fisheries yields from Lake Baringo were analyzed using a combination of statistical methods. Linear and waveform regression analyses described patterns of lake level fluctuations over time while, Pearson’s correlation determined the concordance of lake level changes with water quality parameters, landings, and condition of fish species. PCA results grouped the study period into different years based on annual water quality variable levels. LOWESS analysis showed the decline of annual lake level amplitude over time with peak values in 1964 (8.6 m) and 2008 (9.4 m). The waveform regression significantly modeled lake level fluctuations as indexed by annual deviations from the long-term average (DLTM) and showed a 20-year oscillation between peak water levels in the lake. There were significant positive correlations of Water Level Fluctuations (WLFs) with water quality variables and water quality index (WQI) in Lake Baringo. Linear regression analyses showed a significant concordance (p < 0.05) between the annual fishery yield and the rising WLFs (r = 0.66). Overall, the results demonstrate that WLFs of Lake Baringo are a driver of fish species biomass and physico-chemical properties of the lake. We recommend the integration of fisheries yields, water quality assessment, and WLFs modeling at different temporal scales in the management of Afrotropical lake ecosystems


Sign in / Sign up

Export Citation Format

Share Document