scholarly journals VERTICAL SUB IRRIGATION

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Alessandro Bozzini

Since millennia, in areas of low rainfall, surface irrigation has been utilized. In 1959 the Israelian inventor Simcha Blass developed a patented very efficient plastic nozzle for dripping the irrigation water from plastic pipes over the crops cultivated soils. In occasion of a FAO project in Libya, this system was utilized for establishing a table grape plantation. In order to support each grape plant, instead of wood poles, plastic pipes of 5 cm diameter, 2.5 mt high were used, dipped into the soil some 50-60 cm, close to each plant. Out of 15 rows, 150 mt long, provided with the normal drip irrigation pipes, in 2 rows a technical modification of “drip irrigation” was used, in which the horizontal water pipe posed on the soil, with holes for dripping the water, was substituted with a normal plastic pipe, without holes, hanged on the plastic vertical poles. In this pipe, close to each grape plant, was made a small hole, in which was inserted a small plastic pipe (like the ones used for blood transfusions). The other side of these mini pipes were inserted into the big vertical plastic pipes used as a support to each plant vegetation, in order to convey the irrigation water deep into the soil. This system has been called “Vertical Subirrigation Technology”. In the summer of the third year of grape cultivation, the electric pump failed and, after a month, only the 2 rows with the modified system did not show any damage. This system was adopted in other FAO projects in the Near East, also for fertile-irrigation.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


2020 ◽  
Vol 12 (17) ◽  
pp. 6779 ◽  
Author(s):  
Indranil Samui ◽  
Milan Skalicky ◽  
Sukamal Sarkar ◽  
Koushik Brahmachari ◽  
Sayan Sau ◽  
...  

In the coastal zone of the Ganges Delta, water shortages due to soil salinity limit the yield of dry season crops. To alleviate water shortage as a consequence of salinity stress in the coastal saline ecosystem, the effect of different water-saving (WS) and water-conserving options was assessed on growth, yield and water use of tomato; two field experiments were carried out at Gosaba, West Bengal, India in consecutive seasons during the winter of 2016–17 and 2017–18. The experiment was laid out in a randomized block design with five treatments viz., surface irrigation, surface irrigation + straw mulching, drip irrigation at 100% reference evapotranspiration (ET0), drip irrigation at 80% ET0, drip irrigation at 80% ET0 + straw mulching. Application of drip irrigation at 80% ET0 + straw mulching brought about significantly the highest fruit as well as the marketable yield of tomato (Solanum lycopersicum L.). The soil reaction (pH), post-harvest organic carbon, nitrogen, phosphorus and potassium (N, P and K) status and soil microbial population along with the biochemical quality parameters of tomato (juice pH, ascorbic acid, total soluble solids and sugar content of fruits) were significantly influenced by combined application of drip irrigation and straw mulching. Surface irrigation significantly increased the salinity level in surface and sub-surface soil layers while the least salinity development was observed in surface mulched plots receiving irrigation water through drip irrigation. The highest water productivity was also improved from drip irrigation at 80% ET0 + straw mulched plots irrespective of the year of experimentation. Such intervention also helped in reducing salinity stress for the tomato crop. Thus, straw mulching along with drip irrigation at 80% ET0 can be recommended as the most suitable irrigation option for tomato crop in the study area as well as coastal saline regions of South Asia. Finally, it can be concluded that the judicious application of irrigation water not only increased growth, yield and quality tomatoes but also minimized the negative impact of soil salinity on tomatoes grown in the coastal saline ecosystem of Ganges Delta.


AGROFOR ◽  
2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Oumaima ASSOULI ◽  
Hamid EL BILALI ◽  
Aziz ABOUABDILLAH ◽  
Rachid HARBOUZE ◽  
Nabil El JAOUHARI ◽  
...  

Agriculture uses more than 80% of water resources in Morocco. The sector isinefficient in terms of water use due to the dominance of surface irrigation. Toaddress this issue, there have been efforts in Moroccan strategies to convert surfaceirrigation to localized one. This paper analyses the dynamics of conversion fromsurface irrigation to drip irrigation in Fez-Meknes region (north-eastern Morocco)through the lens of the Multi-Level Perspective (MLP) on socio-technicaltransitions. MLP framework suggests that transitions are the results of dialecticinteractions among a niche (cf. novelty of drip irrigation), a regime (cf. traditionalsystem of surface irrigation) and the socio-technical landscape (e.g. policies). MLPwas complemented with a multi-capital approach to better assess transitionimpacts. Results show that the area equipped with drip irrigation in Fez-Meknesregion increased from 2174 ha in 2008 to 39290 ha in 2016. Different programshave been implemented in the framework of the Green Morocco Plan to fosterirrigation transition e.g. the National Irrigation Water Saving Program (PNEEI),launched in 2007, aims to convert 550,000 ha to localized irrigation (e.g. dripirrigation) in 15 years. Thanks to these programs, financial and technical supporthas been provided to farmers to promote the adoption of water-saving irrigationtechniques and practices. Farm-level results show that transition to localizedirrigation decreases irrigation water use, increases yields and profitability (cf. grossmargin per ha), and improves water productivity. Despite an enabling policylandscape and positive transition impacts, surface irrigation is still maintained inthe region and farmers are reluctant to change for many reasons (e.g. age andeducation level, unclear land tenure, financial and administrative difficulties).Efforts are still needed to train farmers on irrigation scheduling and on the use ofsmart irrigation techniques to save water. Further research is required to betterunderstand current bottlenecks in the irrigation transition process and designappropriate and context-specific transition governance strategies.


2021 ◽  
Vol 12 (3) ◽  
pp. 142-150
Author(s):  
Payel Pal ◽  
◽  
Sanmay Kumar Patra ◽  
Ratneswar Ray ◽  
◽  
...  

Sustainability of quality fruit production in Indian jujube is adversely affected by improper irrigation and nutrient management. A field study comprising of four irrigation levels (drip irrigation at 0.8, 0.6 and 0.4 of pan evaporation (E0) and surface irrigation at 1.0 IW/CPE with 50 mm depth) and three nutrient levels (100% RDF, 75% RDF+25% RDF as vermicompost and 50% RDF+50% RDF as vermicompost) was conducted during 2018-19 (11 months) on jujube plant. Results showed that tallest tree (3.72 m), greatest tree circumference (0.32 m), maximum fruits tree-1 (563), highest fruit weight (15.5 g) and fruit yield tree-1 (8.42 kg) were recorded with drip irrigation at 0.8 E0 with 100% RDF. Minimum growth, yield components and yield were found with drip irrigation at 0.4 E0 with 50% RDF+50% RDF as vermicompost. Seasonal ETa was 373.6, 409.4 and 446.4 mm for drip irrigation at 0.4, 0.6 and 0.8 E0, respectively and 694 mm for surface irrigation. Maximum CWUE of 18.87 g tree-1 mm-1 was obtained with drip irrigation at 0.8 E0 with 100% RDF. About 55.7-75.5% water was saved by drip irrigations which could bring an additional area of 55.5-85.8% under drip irrigated jujube. Highest predicted yield of 9.02 kg tree-1 was accomplished with 278 mm irrigation water. This model approach could serve as a good guideline to yield potential decision in relation to limited irrigation water for jujube growers in the Indo-Gangetic plains or similar agro-climatic regions.


Author(s):  
Rumiana Kireva ◽  
Roumen Gadjev

The deficit of the irrigation water requires irrigation technologies with more efficient water use. For cucumbers, the most suitable is the drip irrigation technology. For establishing of the appropriate irrigation schedule of cucumbers under the soil and climate conditions in the village of Chelopechene, near Sofia city, the researchеs was conducted with drip irrigation technology, adopting varying irrigation schedules and hydraulic regimes - from fully meeting the daily crops water requirements cucumbers to reduced depths with 20% and 40%. It have been established irrigation schedule with adequate pressure flows in the water source, irrigation water productivity and yields of in plastic unheated greenhouses of the Sofia plant.


2008 ◽  
Vol 95 (6) ◽  
pp. 659-668 ◽  
Author(s):  
Taisheng Du ◽  
Shaozhong Kang ◽  
Jianhua Zhang ◽  
Fusheng Li ◽  
Boyuan Yan

2015 ◽  
Vol 8 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Andriani Asarah Bancin ◽  
Dewi Sri Jayanti ◽  
T. Ferijal

Abstrak. Daerah Aliran Sungai (DAS) Krueng Aceh memiliki jaringan irigasi permukaan teknis untuk mengairi 7.450 ha lahan sawah di Kabupaten Aceh Besar. Peningkatan tekanan pada sumber daya air yang tersedia untuk irigasi dan kebutuhan lainnya, terutama selama musim kemarau, membutuhkan jaringan irigasi yang memiliki efisiensi yang tinggi untuk menyalirkan air irigasi. Penelitian ini bertujuan untuk mengetahui efisiensi penyaluran dan jumlah kehilangan air di saluran sekunder dan tersier dari jaringan irigasi pilihan yaitu Jaringan Lam Raya.Hasil penelitian menunjukkan bahwa efisiensi penyaluran rata-rata untuk BKA Kn 16 Lam Raya adalah 52,47%. Rata-rata kehilangan air dan efesiensi penyaluran air di saluran sekunder berturut-turut adalah 0.048 m3/dtk dan 81,11%. Kehilangan tersebut disebabkan oleh penguapan 2,73 x 10-7 m3/dtk, rembesan 0,00212 m3/dtk dan faktor lainnya 0,04548 m3/dtk. Kehilangan air rata-rata di saluran tersier adalah 0.01 m3/dtk yang merupakan kehilangan akibat adanya penguapan 5,046 x 10-8 m3/dtk, rembesan 0,00033m3/dtk dan faktor lainnya 0,00994 m3/dtk. Hal tersebut menyebabkan efisiensi penyaluran air di saluran tersier sekitar 71,88%. Namun, kinerja jaringan irigasi masih dikategorikan baik karena memiliki efisiensi penyaluran air yang lebih besar dari 60%. Kehilangan air di saluran tersier sebagian besar disebabkan oleh banyak bagian dinding dan dasar saluran yang rusak, dan adanya vegetasi dan sedimen pada saluran yang memperlambat aliran air. Conveyance Efficiency Of Irrigation Water At BKA Kn 16 Lam Raya Krueng Aceh Irrigation Area Abstract. Krueng Aceh Watershed has technical surface irrigation network to irrigate 7.450 ha of paddy fields in Aceh Besar District. Increasing pressure on available water resources for irrigation and other needs, particularly during dry season, requires an irrigation network having a higher level of efficiency to deliver irrigation water. This study aims to determine the delivery efficiencies and amount of water loss in secondary and tertiary channels of selected irrigation network. Lam Raya network was selected for the study area. Results showed that average delivery efficiency for BKA Kn 16 Lam Raya was 52.47%. The average water loss and water delivery efficiency in secondary channel were 0,048 and 81,11%, respectively. The loss was caused by evaporation 2.73 x 10-7 m3/s, seepage 0.00212 m3/s and other factors 0.04548 m3/s. The average water loss in tertiary channels was 0,01 m3/s contributed by losses from evaporation 5.046 x 10-8 m3/s, seepage 0.00033 m3/s and other factors 0.00994 m3/s. It caused tertiary channel's water delivery efficiency was approximately 71,88%. However, performance of irrigation network was classified as good since it has water delivery efficiency greater than 60%.  Water loss in tertiary channel largely due to many parts of wall and base of the channels were broken, and the presence of vegetation and sediment in the channel slowed the water flow.


2013 ◽  
Vol 30 (3) ◽  
pp. 723-744
Author(s):  
M. A. El-Adl ◽  
M. M. Ibrahim ◽  
W. H. Abo El Hassan ◽  
H. M. Abd El-Baki

2021 ◽  
Vol 66 (1) ◽  
pp. 1-16
Author(s):  
Raisa Vozhehova ◽  
Galina Balashova ◽  
Liubov Boiarkina ◽  
Olesya Yuzyuk ◽  
Sergey Yuzyuk ◽  
...  

The article presents field research results on the effectiveness of different moisture and nutrition conditions at the cultivation of early potato under drip irrigation in southern Ukraine. The scheme of the experiment included the treatment with the complex Mochevyn K as an additional control and different methods and correlation of fertilizers Plantafol (treatment of tubers before planting, fertilizing, at budding and their combination), as well as different soil moisture conditions (irrigation rates of 100 and 200 m?/ha). Studies have shown that the average yield of early potato without irrigation was 10.44 t/ha. Moisture conditions significantly affected the yield of young tubers - irrigation at a rate of 200 m?/ha provided 21.61 t/ha, whereas reducing the irrigation rate to 100 m?/ha led to a decrease in yield - 19.86 t/ha. The first treatment of planting tubers, treatment of plants at sprouting and during budding provided almost the same yield. The second and the third treatments of plants and tubers did not lead to a significant increase in yield. The highest productivity of potato was provided by Plantafol treatment of tubers and combination of tuber treatment with foliar feeding at mass sprouting phase with a 200 m?/ha irrigation rate for two years: 24.16 and 23.22 t/ha.


Sign in / Sign up

Export Citation Format

Share Document