scholarly journals REDUCING SURFACE IRRIGATION WATER LOSSES IN THE NILE DELTA

2013 ◽  
Vol 30 (3) ◽  
pp. 723-744
Author(s):  
M. A. El-Adl ◽  
M. M. Ibrahim ◽  
W. H. Abo El Hassan ◽  
H. M. Abd El-Baki
2015 ◽  
Vol 8 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Andriani Asarah Bancin ◽  
Dewi Sri Jayanti ◽  
T. Ferijal

Abstrak. Daerah Aliran Sungai (DAS) Krueng Aceh memiliki jaringan irigasi permukaan teknis untuk mengairi 7.450 ha lahan sawah di Kabupaten Aceh Besar. Peningkatan tekanan pada sumber daya air yang tersedia untuk irigasi dan kebutuhan lainnya, terutama selama musim kemarau, membutuhkan jaringan irigasi yang memiliki efisiensi yang tinggi untuk menyalirkan air irigasi. Penelitian ini bertujuan untuk mengetahui efisiensi penyaluran dan jumlah kehilangan air di saluran sekunder dan tersier dari jaringan irigasi pilihan yaitu Jaringan Lam Raya.Hasil penelitian menunjukkan bahwa efisiensi penyaluran rata-rata untuk BKA Kn 16 Lam Raya adalah 52,47%. Rata-rata kehilangan air dan efesiensi penyaluran air di saluran sekunder berturut-turut adalah 0.048 m3/dtk dan 81,11%. Kehilangan tersebut disebabkan oleh penguapan 2,73 x 10-7 m3/dtk, rembesan 0,00212 m3/dtk dan faktor lainnya 0,04548 m3/dtk. Kehilangan air rata-rata di saluran tersier adalah 0.01 m3/dtk yang merupakan kehilangan akibat adanya penguapan 5,046 x 10-8 m3/dtk, rembesan 0,00033m3/dtk dan faktor lainnya 0,00994 m3/dtk. Hal tersebut menyebabkan efisiensi penyaluran air di saluran tersier sekitar 71,88%. Namun, kinerja jaringan irigasi masih dikategorikan baik karena memiliki efisiensi penyaluran air yang lebih besar dari 60%. Kehilangan air di saluran tersier sebagian besar disebabkan oleh banyak bagian dinding dan dasar saluran yang rusak, dan adanya vegetasi dan sedimen pada saluran yang memperlambat aliran air. Conveyance Efficiency Of Irrigation Water At BKA Kn 16 Lam Raya Krueng Aceh Irrigation Area Abstract. Krueng Aceh Watershed has technical surface irrigation network to irrigate 7.450 ha of paddy fields in Aceh Besar District. Increasing pressure on available water resources for irrigation and other needs, particularly during dry season, requires an irrigation network having a higher level of efficiency to deliver irrigation water. This study aims to determine the delivery efficiencies and amount of water loss in secondary and tertiary channels of selected irrigation network. Lam Raya network was selected for the study area. Results showed that average delivery efficiency for BKA Kn 16 Lam Raya was 52.47%. The average water loss and water delivery efficiency in secondary channel were 0,048 and 81,11%, respectively. The loss was caused by evaporation 2.73 x 10-7 m3/s, seepage 0.00212 m3/s and other factors 0.04548 m3/s. The average water loss in tertiary channels was 0,01 m3/s contributed by losses from evaporation 5.046 x 10-8 m3/s, seepage 0.00033 m3/s and other factors 0.00994 m3/s. It caused tertiary channel's water delivery efficiency was approximately 71,88%. However, performance of irrigation network was classified as good since it has water delivery efficiency greater than 60%.  Water loss in tertiary channel largely due to many parts of wall and base of the channels were broken, and the presence of vegetation and sediment in the channel slowed the water flow.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


2011 ◽  
Vol 6 (No. 2) ◽  
pp. 61-72
Author(s):  
M.A. Sayed ◽  
M.N.A. Bedaiwy

A two-year experiment was conducted in the desert west of the Nile Delta to study the effect of applying fertilizers and other agronomic chemicals through sprinkler irrigation water (a technique referred to as chemigation) on wheat grain yield. Experiment included three levels of irrigation inputs, namely: I<sub>1</sub> = potential evapotranspiration rate (ET<sub>p</sub>), I<sub>2</sub> = 0.8 ETp and I<sub>3</sub> = 0.6 ET<sub>p</sub>, and included two application method of fertilizers and herbicide (chemication and traditional). Applying chemigation resulted in significant increase in grain yield, ranging between 9.9% and 50.0% with averages of 43.2% and 14.5% over the first and second seasons, respectively. Irrigation treatment I<sub>1</sub> produced higher grain yield than the other two irrigation treatments both under traditional and chemigation methods as a result of better fertilizer distribution in the root zone. Grain yield associated with combined I<sub>1</sub> and chemigation was highest of all treatments and was greater than Egypt's national average by 14% and 9% for seasons 1 and 2, respectively. Chemigation resulted in more uniform distribution of nitrate-nitrogen throughout the root zone with nitrate levels falling within safe limits. Concentrations under traditional application resulted in lower levels in upper soil and greater levels at deeper soil of the root zone exceeding safe limits and subjecting the soil and groundwater to contamination hazards. For both N and K fertilizers, fertilizer use efficiency was greater under chemigation than under traditional application. Efficiencies increased with increasing irrigation water, apparently due to better fertilizer distribution. Applying herbicides with sprinkler irrigation water reduced weed infestation from 48% to 6.5%. As a result of improved yield under chemigation, an increase in revenue per hectare of 112.6% was achieved.


Author(s):  
G. Senthil Kumar ◽  
T. Ramesh ◽  
K. Subrahmaniyan ◽  
V. Ravi

A field experiment was conducted at Tamil Nadu Rice Research Institute, Aduthurai, Tamil Nadu during Summer, 2013 and 2014 to study the response of blackgram varieties to different levels of irrigation through applied sprinkler system. Four levels of irrigation I1 - 50 per cent pan evaporation through sprinkler irrigation, I2 - 75 per cent pan evaporation through sprinkler irrigation, I3 - 100 per cent pan evaporation through sprinkler irrigation and I4 - Surface irrigation in main plot and three blackgram varieties viz., ADT 5, PBG 4 and VBN BG 6 were evaluated in split plot design with three replications. Sprinkler irrigation at 100% pan evaporation in variety ADT 5 gave significantly better growth and yield attributes and higher grain yield of 1217 kg/ha which was at par with surface irrigation method in ADT 5 variety (1184 kg/ha). Surface irrigation method utilized higher amount of irrigation water of 428.1 mm and 413.6 mm, whereas, sprinkler irrigation at 100% pan evaporation utilized minimum amount of irrigation water of 329.2 mm and 308.7 mm during summer 2013 and 2014, respectively. Water saving under sprinkler irrigation at 100% pan evaporation was 23.1% and 25.4% as compared to surface irrigation method during summer 2013 and 2014, respectively.


Sign in / Sign up

Export Citation Format

Share Document