scholarly journals Lower Extremity Fatigue, Sex, and Landing Performance in a Population With Recurrent Low Back Pain

2015 ◽  
Vol 50 (4) ◽  
pp. 378-384 ◽  
Author(s):  
Ram Haddas ◽  
C. Roger James ◽  
Troy L. Hooper

Context Low back pain and lower extremity injuries affect athletes of all ages. Previous authors have linked a history of low back pain with lower extremity injuries. Fatigue is a risk factor for lower extremity injuries, some of which are known to affect female athletes more often than their male counterparts. Objective To determine the effects of lower extremity fatigue and sex on knee mechanics, neuromuscular control, and ground reaction force during landing in people with recurrent low back pain (LBP). Design Cross-sectional study. Setting A clinical biomechanics laboratory. Patients or Other Participants Thirty-three young adults with recurrent LBP but without current symptoms. Intervention(s) Fatigue was induced using a submaximal free-weight squat protocol with 15% body weight until task failure was achieved. Main Outcome Measure(s) Three-dimensional knee motion, knee and ankle moments, ground reaction force, and trunk and lower extremity muscle-activity measurements were collected during 0.30-m drop vertical-jump landings. Results Fatigue altered landing mechanics, with differences in landing performance between sexes. Women tended to have greater knee-flexion angle at initial contact, greater maximum knee internal-rotation angle, greater maximum knee-flexion moment, smaller knee-adduction moment, smaller ankle-inversion moment, smaller ground reaction force impact, and earlier multifidus activation. In men and women, fatigue produced a smaller knee-abduction angle at initial contact, greater maximum knee-flexion moment, and delays in semitendinosus, multifidus, gluteus maximus, and rectus femoris activation. Conclusions Our results provide evidence that during a fatigued 0.30-m landing sequence, women who suffered from recurrent LBP landed differently than did men with recurrent LBP, which may increase women's exposure to biomechanical factors that can contribute to lower extremity injury.

2016 ◽  
Vol 49 (9) ◽  
pp. 1705-1710 ◽  
Author(s):  
Nader Farahpour ◽  
AmirAli Jafarnezhad ◽  
Mohsen Damavandi ◽  
Abbas Bakhtiari ◽  
Paul Allard

2007 ◽  
Vol 23 (4) ◽  
pp. 289-299 ◽  
Author(s):  
Nelson Cortes ◽  
James Onate ◽  
João Abrantes ◽  
Linda Gagen ◽  
Elizabeth Dowling ◽  
...  

The purpose of this study was to assess kinematic lower extremity motion patterns (hip flexion, knee flexion, knee valgus, and ankle dorsiflexion) during various foot-landing techniques (self-preferred, forefoot, and rear foot) between genders. 3-D kinematics were collected on 50 (25 male and 25 female) college-age recreational athletes selected from a sample of convenience. Separate repeated-measures ANOVAs were used to analyze each variable at three time instants (initial contact, peak vertical ground reaction force, and maximum knee flexion angle). There were no significant differences found between genders at the three instants for each variable. At initial contact, the forefoot technique (35.79° ± 11.78°) resulted in significantly (p= .001) less hip flexion than did the self-preferred (41.25° ± 12.89°) and rear foot (43.15° ± 11.77°) techniques. At peak vertical ground reaction force, the rear foot technique (26.77° ± 9.49°) presented significantly lower (p= .001) knee flexion angles as compared with forefoot (58.77° ± 20.00°) and self-preferred (54.21° ± 23.78°) techniques. A significant difference for knee valgus angles (p= .001) was also found between landing techniques at peak vertical ground reaction force. The self-preferred (4.12° ± 7.51°) and forefoot (4.97° ± 7.90°) techniques presented greater knee varus angles as compared with the rear foot technique (0.08° ± 6.52°). The rear foot technique created more ankle dorsiflexion and less knee flexion than did the other techniques. The lack of gender differences can mean that lower extremity injuries (e.g., ACL tears) may not be related solely to gender but may instead be associated with the landing technique used and, consequently, the way each individual absorbs jump-landing energy.


2019 ◽  
Vol 28 (8) ◽  
pp. 847-853
Author(s):  
Ali Jalalvand ◽  
Mehrdad Anbarian

Context: The link between landing parameters and lower limb muscle fatigue in association with chronic low back pain (CLBP) is not well understood. Objective: To examine the effects of fatigue on the ground reaction force components during landing in people with nonspecific CLBP. Design: Quasi-experimental study. Setting: Clinical biomechanics laboratory. Participants: A total of 44 subjects were equally divided into a healthy group and a group with CLBP. Main Outcome Measures: The ground reaction force along anterior–posterior (y) and medial–lateral (x) and vertical (z) axes, time to peak (TTP), the rate of force development, and impulses for all axes were calculated. A repeated-measures analysis of variance (group × fatigue) was used to compare the data among groups. Results: In the unfatigued conditions, the amplitudes of Fy3, Fz2, and TTP of Fy1, Fy2, Fz1, Fz2, Fz3, Fz4, rate of force development in Y in the CLBP subjects are significantly different than those in the healthy subjects (P < .05). In the fatigued conditions, the amplitudes of Fz2, Fz3, Fz4, and TTP of Fy2, Fy3, Fy4, Fz2, impulses of X2, Z in the CLBP group were significantly different than those in the healthy subjects (P < .05). Within-group comparisons of measured Fx1, Fy1, Fy2, Fz2, Fz4 and TTP of Fx1, Fy1, Fy2, Fz2, Fz3, Fz4, impulses of X2, z were significantly different from prefatigue to postfatigue in the healthy group (P < .05). Within-group comparisons of measured Fx1, Fy1, Fz1, Fz2 and TTP of Fx5, Fz1, impulses of X2 were significantly differed from prefatigue to postfatigue in the CLBP group (P < .05). Conclusions: It seems that TTP of ground reaction force variables in CLBP may have clinical values for rehabilitation. Muscle fatigue altered landing performance. However, patients with CLBP will respond differently to lower-extremity fatigue. These altered variables in patients with low back pain are the cause of future injuries or lower-extremity injuries that need to be addressed in further studies.


2020 ◽  
Vol 29 (4) ◽  
pp. 400-404 ◽  
Author(s):  
Whitney Williams ◽  
Noelle M. Selkow

Context: Decreased hamstring flexibility can lead to a plethora of musculoskeletal injuries, including low back pain, hamstring strains, and patellofemoral pain. Lack of flexibility may be the result of myofascial adhesions. The fascia connected to the hamstrings is part of the superficial back line that runs from the cranium to the plantar aspect of the foot. Any disruption along this chain may limit the flexibility of the hamstring. Objective: To investigate if self-myofascial release (SMR) of the plantar surface of the foot in addition to the hamstring group was more effective at improving the flexibility of the hamstrings when compared with either intervention alone. Design: Cross-over study. Setting: Athletic training facility. Participants: Fifteen college students (5 males and 10 females; age: 20.9 [1.4] y, height: 173.1 [10.3] cm, mass: 80.0 [24.9] kg) who were not older than 30, with no history of low back pain or injury within the past 6 months, no history of leg pain or injury within the past 6 months, no current signs or symptoms of cervical or lumbar radicular pain, no current complaint of numbness or tingling in the lower-extremity, and no history of surgery in the lower-extremity or legs. Interventions: Each participant received each intervention separated by at least 96 hours in a randomized order: hamstring foam rolling, lacrosse ball on the plantar surface of the foot, and a combination of both. Main Outcome Measures: The sit-and-reach test evaluated hamstring flexibility of each participant before and immediately after each intervention. Results: There were no significant differences found among the SMR techniques on sit-and-reach distance (F2,41 = 2.7, P = .08, ). However, at least 20% of participants in each intervention improved sit-and-reach distance by 2.5 cm. Conclusions: SMR may improve sit-and-reach distance, but one technique of SMR does not seem to be superior to another.


Author(s):  
Alisa Drapeaux ◽  
Jon Hurdelbrink

Background: Muscle energy technique (MET) is asn osteopathic treatment technique that is utilized frequently in the clinical setting, yet the overall effectiveness is minimally supported within literature. MET is an osteopathic technique that involves an isometric contract relax technique intended to improve alignment and enhance neuromuscular education. Objective: The purpose of this study was to determine the effectiveness of MET on running kinetics on subjects with low back pain. Method: A quasi-experimental research design was implemented and subjects, all of whom either had a history of or currently experience low back pain, underwent pre-intervention data collection of: anthropometric measurements, medical history, dorsaVi 3D running analysis, and a musculoskeletal and neurological clinical exam. Subjects underwent 6 weeks of isolated lumbo-pelvic MET at a frequency of twice a week, and were instructed to avoid all other treatment. Post-intervention data collected included a clinical exam and another dorsaVI running analysis. Results: Data was analyzed including: pre and post-treatment initial peak acceleration, ground contact time, and ground reaction force. A paired t-test comparing pre and post mean kinetic changes demonstrated the following p values: initial peak acceleration p = .80, ground contact time p = .96, and ground reaction force p = .68. Conclusion: This study demonstrated that isolated MET treatment is not statistically significant for changing 3D kinetic running variable in subjects with low back pain. Clinical Implications: Recommend healthcare providers to use a multi-treatment approach for low back pain. Future research should include a control group and larger sample size.


1967 ◽  
Vol 9 ◽  
pp. 139-139
Author(s):  
Tadaatsu ITO ◽  
Takashi NAKAGAWA ◽  
Hideyuki ICHISEKI ◽  
Shoichi OBINATA ◽  
Makoto WATANABE ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 552-563 ◽  
Author(s):  
M. Jason Highsmith ◽  
Lisa M. Goff ◽  
Amanda L. Lewandowski ◽  
Shawn Farrokhi ◽  
Brad D. Hendershot ◽  
...  

Author(s):  
Hannah M. Ashworth ◽  
Christian N. Warner ◽  
Saurabh P Mehta ◽  
Franklin D. Shuler ◽  
Ali Oliashirazi

Sign in / Sign up

Export Citation Format

Share Document