scholarly journals Die struktuur en moontlike aandrywingskragte van die 1991 - 1992 - droogte in Suidelike Afrika

1993 ◽  
Vol 12 (1) ◽  
pp. 8-16 ◽  
Author(s):  
M. R. Jury

A diagnostic model is used to investigate the underlying atmospheric processes that gave rise to the 1991-1992 drought over Southern Africa. The first indicator of the impending drought was a rise of more than 1 °C in the sea surface temperatures of the tropical part of the Southern Indian Ocean in the winter of 1991. This may have been instrumented in causing an anomaly in the mean Walker circulation to develop, through which the inflow of warm, moist air from the Mozambique Channel to the eastern escarpment of Southern Africa was inhibited, with a concurrent reduction in rainfall. It is concluded that the pattern and cycles of summer rainfall over Southern Africa are now sufficiently well understood to venture tentative predictions, but that increased co-operation between the meteorological bodies of Southern Africa will be required to achieve this.

2021 ◽  
Author(s):  
Xinquan Zhou ◽  
Stéphanie Duchamp-Alphonse ◽  
Masa Kageyama ◽  
Franck Bassinot ◽  
Xiaoxu Shi ◽  
...  

<p>Today, precipitation and wind patterns over the equatorial Indian Ocean and surrounding lands are paced by monsoon and Walker circulations that are controlled by the seasonal land-sea temperature contrast and the inter-annual convection over the Indo-Pacific Warm Pool, respectively. The annual mean surface westerly winds are particularly tied to the Walker circulation, showing interannual variability coupled with the gradient of Sea Surface Temperature (SST) anomaly between the tropical western and southeastern Indian Ocean, namely, the Indian Ocean Dipole (IOD). While the Indian monsoon pattern has been widely studied in the past, few works deal with the evolution of Walker circulation despite its crucial impacts on modern and future tropical climate systems. Here, we reconstruct the long-term westerly (summer) and easterly (winter) wind dynamics of the equatorial Indian Ocean (10°S−10°N), since the Last Glacial Maximum (LGM) based on i) primary productivity (PP) records derived from coccolith analyses of sedimentary cores MD77-191 and BAR94-24, retrieved off the southern tip of India and off the northwestern tip of Sumatra, respectively and ii) the calculation of a sea surface temperature (SST) anomaly gradient off (south) western Sumatra based on published SST data. We compare these reconstructions with atmospheric circulation simulations obtained with the general coupled model AWI-ESM-1-1-LR (Alfred Wegener Institute Earth System Model).</p><p>Our results show that the Indian Ocean Walker circulation was weaker during the LGM and the early/middle Holocene than present. Model simulations suggest that this is due to anomalous easterlies over the eastern Indian Ocean. The LGM mean circulation state may have been comparable to the year 1997 with a positive IOD, when anomalously strong equatorial easterlies prevailed in winter. The early/mid Holocene mean circulation state may have been equivalent to the year 2006 with a positive IOD, when anomalously strong southeasterlies prevailed over Java-Sumatra in summer. The deglaciation can be seen as a transient period between these two positive IOD-like mean states.</p>


2014 ◽  
Vol 27 (7) ◽  
pp. 2757-2778 ◽  
Author(s):  
N. J. Burls ◽  
A. V. Fedorov

Abstract The mean east–west sea surface temperature gradient along the equator is a key feature of tropical climate. Tightly coupled to the atmospheric Walker circulation and the oceanic east–west thermocline tilt, it effectively defines tropical climate conditions. In the Pacific, its presence permits the El Niño–Southern Oscillation phenomenon. What determines this temperature gradient within the fully coupled ocean–atmosphere system is therefore a central question in climate dynamics, critical for understanding past and future climates. Using a comprehensive coupled model [Community Earth System Model (CESM)], the authors demonstrate how the meridional gradient in cloud albedo between the tropics and midlatitudes (Δα) sets the mean east–west sea surface temperature gradient in the equatorial Pacific. To change Δα in the numerical experiments, the authors change the optical properties of clouds by modifying the atmospheric water path, but only in the shortwave radiation scheme of the model. When Δα is varied from approximately −0.15 to 0.1, the east–west SST contrast in the equatorial Pacific reduces from 7.5°C to less than 1°C and the Walker circulation nearly collapses. These experiments reveal a near-linear dependence between Δα and the zonal temperature gradient, which generally agrees with results from the Coupled Model Intercomparison Project phase 5 (CMIP5) preindustrial control simulations. The authors explain the close relation between the two variables using an energy balance model incorporating the essential dynamics of the warm pool, cold tongue, and Walker circulation complex.


2013 ◽  
Vol 28 (4) ◽  
pp. 619-632 ◽  
Author(s):  
Yiming V. Wang ◽  
Guillaume Leduc ◽  
Marcus Regenberg ◽  
Nils Andersen ◽  
Thomas Larsen ◽  
...  

2002 ◽  
Vol 33 (4) ◽  
pp. 305-318 ◽  
Author(s):  
Lars Hydén

Lesotho is located approximately at latitude 30 degrees south in the interior of Southern Africa. The mesoscale climate is complicated and governed by various weather systems. The inter-annual rainfall variability is great, resulting in low food security, since the growing of crops in the Lesotho Lowlands is almost exclusively rain-fed. Reliable forecasts of austral summer rainfall are thus valuable. Earlier research has shown that the sea surface temperatures (SST) in the Indian Ocean to some extent govern rainfall in Southern Africa. The research presented is part of an on-going project to find suitable oceanographic and meteorological predictors, which can be used in a forecast model for summer rainfall, to be developed later. The first part of this paper investigates the correlation between the average SSTs in the Equatorial Indian Ocean, the Central Indian Ocean, and the Agulhas Gyre, respectively, and rainfall two months later in the Lesotho Lowlands during early austral summer, October until December for the period 1949-1995. No significant correlations have been found, probably because the three ocean areas are too large. In the second part of this paper the monthly SST in 132 grid squares in the Indian Ocean were investigated and found to be correlated with rainfall in the Lesotho Lowlands two months later, October until March. Significant correlations have been found between the SSTs and certain ocean areas and December, January, and February rainfall, respectively. There is significant negative correlation between December rainfall and October SST in an ocean area between Kenya and Somalia across the Indian Ocean to Sumatra. In the area where the Somali Current flows there is also significant correlation between December SST and December rainfall. January rainfall is significantly negatively correlated with November SST in an ocean area, northeast of Madagascar. February rainfall is significantly, but weakly, negatively correlated with SST in a narrow north-south corridor in the Eastern Indian Ocean from the equator down to latitude 40 degrees south.


Sign in / Sign up

Export Citation Format

Share Document