scholarly journals Prevalence of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa from a tertiary level Intensive Care Unit

2016 ◽  
Vol 8 (4) ◽  
pp. 155 ◽  
Author(s):  
KVSHari Kumar ◽  
JS Gill ◽  
Sunil Arora ◽  
SP Khanna
Author(s):  
Marina Munari ◽  
Francesca Franzoi ◽  
Massimo Sergi ◽  
Alessandro De Cassai ◽  
Federico Geraldini ◽  
...  

Author(s):  
Somkiattiyos Woradet ◽  
Bhunyabhadh Chaimay ◽  
Nuntiput Putthanachot ◽  
Narongchai Sangsa ◽  
Phatsaraporn Sirisa

Introduction: Infections caused by Extensively Drug-resistant Pseudomonas aeruginosa (XDR-PA) is a medical problem worldwide. In Thailand, the incidence of XDR-PA bacteremia remains and is continuously increasing.Aim: To investigate an association between antimicrobial agent administration and the treatment of XDR-PA infection among patients admitted in Intensive Care Unit (ICU). Materials and Methods: A hospital-based analytic cross-sectional study was performed from January 2014 to December 2015. Of these, 47 cases diagnosed with XDR-PA bacteremia infection and 94 controls without XDR-PA infection were enrolled. Data were retrieved and retrospectively reviewed from medical records of the patients hospitalised in the ICU at Roi-Et Hospital, Thailand. Multiple logistic regressions were used and perform to investigate an association between antimicrobial agent administrations for treatment of XDR-PA infection. Results: Third generation Cephalosporin (OR=1.99; 95%CI: 1.22 to 4.13), Ciprofloxacin (OR=3.40; 95%CI: 1.24 to 9.49) and Carbapenem (OR=4.66; 95%CI: 2.04 to 10.64) were more likely to be administrated for treatment of XDR-PA infection among patients. Conclusion: Antimicrobial agents associated with the treatment of XDR-PA bacteremia infection among patients were third generation Cephalosporin, Ciprofloxacin and Carbapenem.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S794-S795
Author(s):  
Mary Francine P Chua ◽  
Syeda Sara Nida ◽  
Jerry Lawhorn ◽  
Janak Koirala

Abstract Background Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa (PA) have limited therapeutic options for treatment. Ceftolozane/tazobactam is a newer anti-pseudomonal drug effective against resistant PA infections, however resistance against this drug has now also developed and is increasing. In this study, we explored the combination of ceftolozane/tazobactam (CT) and meropenem (MP) as a possible effective regimen against MDR and XDR PA. Methods We obtained 33 non-duplicate isolates of MDR and XDR PA grown from blood, urine and respiratory samples collected from patients admitted between 2015 and 2019 at our two affiliate teaching hospitals. MDR PA was defined as resistance to 3 or more classes of anti-pseudomonal antibiotics, and XDR PA as resistance to all but two or less classes of anti-pseudomonal antibiotics. Antimicrobial preparations of both MP and CT were made according to manufacturer instructions. Susceptibility testing was performed using the checkerboard method in accordance to CLSI guidelines (CLSI M100, 2017). The ATCC 27853 strain of PA used as control. Synergy, additive effect, indifference and antagonism were defined as FIC (fractional inhibitory concentration) indices of ≤0.5, >0.5 to <1, >1 to <4, and >4, respectively. Results Thirteen (39%) of 33 PA isolates were classified as XDR, while 20 (61%) PA isolates were MDR. All isolates were resistant to MP (MIC50 >32 ug/mL), while only 2 (6%) isolates were susceptible to CT (MIC50 64 ug/mL). A synergistic effect was seen in 9 (27.3%) of PA isolates (FIC index range 0.28 to 0.5)— 2 of which were XDR PA, and 7 were MDR PA. An additive effect was seen in 12 (36.4%), with indifference seen in 12 (36.4%) of isolates. In this study, no antagonism was seen when CT and MP were combined. Conclusion When used in combination, CT and MP can exert a synergistic effect against MDR and XDR PA. Additive effect and indifference can also be seen when both antibiotics were used. Moreover, there was no antagonism seen when both antibiotics were combined. This study shows that the use of CT and MP in combination may be an option against XDR and MDR PA infections. Disclosures All Authors: No reported disclosures


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2018 ◽  
Vol 15 ◽  
pp. 136-139 ◽  
Author(s):  
Olga Rodríguez-Núñez ◽  
Marco Ripa ◽  
Laura Morata ◽  
Cristina de la Calle ◽  
Celia Cardozo ◽  
...  

Author(s):  
Aymen Mabrouk ◽  
Yosra Chebbi ◽  
Anis Raddaoui ◽  
Asma Krir ◽  
Amen Allah Messadi ◽  
...  

AbstractExtensively drug resistant Acinetobacter baumannii (XDR-Ab), has emerged as an important pathogen in several outbreaks. The aim of our study was to investigate the eventual genetic relatedness of XDR-Ab strains recovered from burn patients and environment sites in the largest Tunisian Burn Intensive Care Unit (BICU) and to characterize β-lactamase encoding genes in these strains. Between March 04th, 2019 and April 22nd, 2019 an outbreak of XDR-Ab was suspected. Environmental screening was done. All isolates were screened by simplex PCR for β-lactamase genes. Genetic relatedness was determined by pulsed field gel electrophoresis (PFGE) of ApaI-digested total DNA. During the study period, 21 strains of A. baumannii were isolated in burn patients, mainly in blood culture (n = 7) and central vascular catheter (n = 6). All strains were susceptible to colistin but resistant to imipenem (n = 23), ciprofloxacin (n = 23), amikacin (n = 22), tigecyclin (n = 5) and rifampicin (n = 4). The blaOXA-51-like, blaOXA23, and blaADC genes were present in all strains. These resistance determinants were associated with blaPER-1 in 10 strains. The ISAba1 was inserted upstream of blaOXA-23 in all isolates. PFGE revealed two major clusters A (n = 11) and B (n = 5). This is the first description in Tunisia of clonally related PER-1 producing XDR-Ab in burn patients with probable environmental origin.


Sign in / Sign up

Export Citation Format

Share Document