scholarly journals Fetal lung interstitial tumor: An uncommon pediatric pulmonary neoplasm

Lung India ◽  
2021 ◽  
Vol 38 (2) ◽  
pp. 186
Author(s):  
SaloniNaresh Shah ◽  
N Geetha ◽  
Radhakrishnan Satheesan ◽  
Ashok Parameswaran
Author(s):  
J.L. Carson ◽  
A.M. Collier

The ciliated cells lining the conducting airways of mammals are integral to the defense mechanisms of the respiratory tract, functioning in coordination with secretory cells in the removal of inhaled and cellular debris. The effects of various infectious and toxic agents on the structure and function of airway epithelial cell cilia have been studied in our laboratory, both of which have been shown to affect ciliary ultrastructure.These observations have led to questions about ciliary regeneration as well as the possible induction of ciliogenesis in response to cellular injury. Classical models of ciliogenesis in the conducting airway epithelium of the mammalian respiratory tract have been based primarily on observations of the developing fetal lung. These observations provide a plausible explanation for the embryological generation of ciliary beds lining the conducting airways but do little to account for subsequent differentiation of ciliated cells and ciliogenesis during normal growth and development.


2010 ◽  
Vol 34 (8) ◽  
pp. S70-S70
Author(s):  
MingJie WANG ◽  
ZiQiang LUO ◽  
Mei LU ◽  
LiHong SHANG ◽  
ShaoJie YUE

1980 ◽  
Vol 48 (3) ◽  
pp. 505-510 ◽  
Author(s):  
L. Frank ◽  
J. Summerville ◽  
D. Massaro

Isoxsuprine, a beta-sympathomimetic agent used clinically to delay premature parturition and to possibly accelerate fetal lung maturation, was administered to pregnant rats at 48 and 24 h prior to delivery. Newborn rats were placed in 96-98% O2 (or room air) to determine if the prenatal isoxsuprine treatment compromised their tolerance to prolonged hyperoxic exposure. (Exogenous catecholamines are known to exacerbate O2 toxicity in adult animals). Survival of the isoxsuprine-treated pups in O2 (52%) was no different than for control neonates exposed to hyperoxia for 7 days (57%) (P = 0.22). Body weight, lung weight, lung protein, and DNA content of the newborns were also not altered by the prenatal isoxsuprine treatment. Lung antioxidant enzyme activities for superoxide dismutase, catalase, and glutathione peroxidase were the same at birth in the isoxsuprine-treated and control rat pups, and the enzyme activities increased in response to hyperoxic exposure in each group to an equivalent degree. Thus, in utero treatment with isoxsuprine had no apparent adverse effect on newborn rats exposed to a prolonged O2 challenge.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 132-133
Author(s):  
Genxiang Mao ◽  
Xiaogang Xu

Abstract Exosomes are one type of small-cell extracellular vesicles (sEVs), which together with the senescence-associated secretory phenotype (SASP) mainly constitute the senescent microenvironment and perform remotely intercellular communication. However, the effects of senescence on exosomes biosynthesis and secretion and its role in the cell senescence are still obscure. Here, we used human fetal lung diploid fibroblasts (2BS) passaged to PD50 to construct the senescent cells model in vitro, which were confirmed by senescence-related β-galactosidase staining, cell cycle distribution, and intracellular ROS levels. PD30 2BS was used as young control. We evaluated the exosomes derived from senescence and young control group respectively and investigated their regulation of senescence. We found that exosomes released from 2BS had typical sizes and cup-shapes morphology and their surface presented typical exosome-associated proteins. The number of exosomes secreted by senescent cells was significantly higher than that of young cells. Moreover, exosomal markers Alix, TSG101, and CD63 were all more expressed than young cells. Furthermore, we treat young cells with exosomes secreted by senescent cells, which can induce senescence-like changes in young cells, including increased SA-β-Gal activity, up-regulated p16 protein expression, and activation of the Notch signaling pathway. The above results imply that exosomes derived from senescent cells can promote cell senescence. The findings expand the current knowledge on exosomes-mediated aging and provide a novel understanding of the relationship between SASP and senescence. This study is supported by National Natural Science Foundation of China (No. 81771520 and 31702144).


Author(s):  
Erin V. McGillick ◽  
Sandra Orgeig ◽  
Beth J. Allison ◽  
Kirsty L. Brain ◽  
Youguo Niu ◽  
...  

Abstract Background In the fetus, the appropriate balance of prooxidants and antioxidants is essential to negate the detrimental effects of oxidative stress on lung maturation. Antioxidants improve respiratory function in postnatal life and adulthood. However, the outcomes and biological mechanisms of antioxidant action in the fetal lung are unknown. Methods We investigated the effect of maternal daily vitamin C treatment (200 mg/kg, intravenously) for a month in late gestation (105–138 days gestation, term ~145 days) on molecular regulation of fetal lung maturation in sheep. Expression of genes and proteins regulating lung development was quantified in fetal lung tissue. The number of surfactant-producing cells was determined by immunohistochemistry. Results Maternal vitamin C treatment increased fetal lung gene expression of the antioxidant enzyme SOD-1, hypoxia signaling genes (HIF-2α, HIF-3α, ADM, and EGLN-3), genes regulating sodium movement (SCNN1-A, SCNN1-B, ATP1-A1, and ATP1-B1), surfactant maturation (SFTP-B and ABCA3), and airway remodeling (ELN). There was no effect of maternal vitamin C treatment on the expression of protein markers evaluated or on the number of surfactant protein-producing cells in fetal lung tissue. Conclusions Maternal vitamin C treatment in the last third of pregnancy in sheep acts at the molecular level to increase the expression of genes that are important for fetal lung maturation in a healthy pregnancy. Impact Maternal daily vitamin C treatment for a month in late gestation in sheep increases the expression of gene-regulating pathways that are essential for normal fetal lung development. Following late gestation vitamin C exposure in a healthy pregnancy, an increase in lung gene but not protein expression may act as a mechanism to aid in the preparation for exposure to the air-breathing environment after birth. In the future, the availability/development of compounds with greater antioxidant properties than vitamin C or more specific targets at the site of oxidative stress in vivo may translate clinically to improve respiratory outcomes in complicated pregnancies at birth.


Author(s):  
Soichi Shibuya ◽  
Jessica Allen-Hyttinen ◽  
Paolo De Coppi ◽  
Federica Michielin

Abstract Purpose This paper aims to build upon previous work to definitively establish in vitro models of murine pseudoglandular stage lung development. These can be easily translated to human fetal lung samples to allow the investigation of lung development in physiologic and pathologic conditions. Methods Lungs were harvested from mouse embryos at E12.5 and cultured in three different settings, i.e., whole lung culture, mesenchyme-free epithelium culture, and organoid culture. For the whole lung culture, extracted lungs were embedded in Matrigel and incubated on permeable filters. Separately, distal epithelial tips were isolated by firstly removing mesothelial and mesenchymal cells, and then severing the tips from the airway tubes. These were then cultured either in branch-promoting or self-renewing conditions. Results Cultured whole lungs underwent branching morphogenesis similarly to native lungs. Real-time qPCR analysis demonstrated expression of key genes essential for lung bud formation. The culture condition for epithelial tips was optimized by testing different concentrations of FGF10 and CHIR99021 and evaluating branching formation. The epithelial rudiments in self-renewing conditions formed spherical 3D structures with homogeneous Sox9 expression. Conclusion We report efficient protocols for ex vivo culture systems of pseudoglandular stage mouse embryonic lungs. These models can be applied to human samples and could be useful to paediatric surgeons to investigate normal lung development, understand the pathogenesis of congenital lung diseases, and explore novel therapeutic strategies.


1988 ◽  
Vol 34 (4) ◽  
pp. 736-738 ◽  
Author(s):  
D Serrano de la Cruz ◽  
E Santillana ◽  
A Mingo ◽  
G Fuenmayor ◽  
A Pantoja ◽  
...  

Abstract This one-dimensional thin-layer chromatographic method is used for assay of phospholipids in the gastric aspirate of newborns. The solvent mixture (chloroform/hexane/methanol/glacial acetic acid/water, 12/7/4/3/0.3 by vol) completely resolves lecithin, sphingomyelin, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, and phosphatidylglycerol. The method is simple, precise, inexpensive, and rapid (chromatographic development takes less than 25 min) and gives high chromatographic resolution. We used this method to determine the lecithin/sphingomyelin densitometric ratio (L/S ratio) and the phosphatidylglycerol percentage in 200 samples of gastric aspirate and found an L/S ratio of 2.5 to be a satisfactory cutoff value for distinguishing fetal lung maturity and immaturity. We confirmed that the presence of phosphatidylglycerol excluded the possibility of respiratory distress.


Sign in / Sign up

Export Citation Format

Share Document