Reconciling Strategic and Tactical Decision Making in Agent-Oriented Simulation of Vehicles in Urban Traffic

Author(s):  
Maksims Fiosins ◽  
Jelena Fiosina ◽  
Jörg Müller ◽  
Jana Görmer
2010 ◽  
Author(s):  
David A. Kobus ◽  
Jason M. Kobus ◽  
Jared Ostertag ◽  
Matthew Kelly ◽  
Erica D. Palmer

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1523
Author(s):  
Nikita Smirnov ◽  
Yuzhou Liu ◽  
Aso Validi ◽  
Walter Morales-Alvarez ◽  
Cristina Olaverri-Monreal

Autonomous vehicles are expected to display human-like behavior, at least to the extent that their decisions can be intuitively understood by other road users. If this is not the case, the coexistence of manual and autonomous vehicles in a mixed environment might affect road user interactions negatively and might jeopardize road safety. To this end, it is highly important to design algorithms that are capable of analyzing human decision-making processes and of reproducing them. In this context, lane-change maneuvers have been studied extensively. However, not all potential scenarios have been considered, since most works have focused on highway rather than urban scenarios. We contribute to the field of research by investigating a particular urban traffic scenario in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based decision-making model for lane changing in congested urban intersections. The model takes as input driving-related parameters related to vehicles in the intersection before they come to a complete stop. We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to drive in front of them. The results are promising, with the prediction accuracy being 100% in all of the cases in which the participants allowed the lane change and 83.3% in the other cases. The false predictions were due to delays in resuming driving after the traffic light turned green.


2021 ◽  
Vol 13 (6) ◽  
pp. 3585
Author(s):  
Dariusz Masłowski ◽  
Małgorzata Dendera-Gruszka ◽  
Ewa Kulińska

In the current era of urban development, people are already using electric vehicles more and more often for transport purposes, which reduces negative impacts on the environment. However, there are still vehicles in towns and cities that run on ordinary internal combustion engines. Performing optimization measures on the operation of these vehicles improves their performance, which can result in positive sustainable development effects. This article presents measures to reduce the wear and tear of urban vehicles and outlines a decision model to determine which of the vehicle parts described suffer the most frequent wear and tear under urban conditions. The article presents a list of structural elements that are most affected by urban traffic, as well as corrective actions to improve such specialized vehicles. Based on the decision analysis, Rule 1 was eliminated as having the least significant impact on vehicle wear and tear, and the least significant impact on urban safety. On the other hand, the most worn-out elements were found to be gearboxes, clutches, bus levelling electronics, and brake pads and discs. The decision-making model made it possible to identify the factors which have the greatest impact on reducing safety in urban spaces.


2018 ◽  
Vol 10 (10) ◽  
pp. 3453 ◽  
Author(s):  
Jiyong Ding ◽  
Juefang Cai ◽  
Guangxiang Guo ◽  
Chen Chen

With the rapid development of the urbanization process, rainstorm water-logging events occur more frequently in big cities in China, which causes great impact on urban traffic safety and brings about severe economic losses. Water-logging has become a hot issue of widespread concern in China. As one kind of natural disasters and emergencies, rainstorm water-logging has the uncertainties of occurrence, development, and evolution. Thus, the emergency decision-making in rainstorm water-logging should be carried out in stages according to its development trend, which is very complicated. In this paper, an emergency decision-making method was proposed for urban water-logging with a hybrid use of dynamic network game technology, Bayesian analysis, and multi-attribute utility theory. The dynamic game process between “rainstorm water-logging” and “decision-making group” was established and the dynamic generation of emergency schemes was analyzed based on Bayesian analysis in various stages of water-logging. In terms of decision-making attributes, this paper mainly considered two goals, i.e., ensuring smooth traffic and controlling emergency cost. The multi-attribute utility theory was used to select the final scheme. An example analysis in Guangzhou of China showed that the method is more targeted and can achieve emergency management objectives more effectively when compared with traditional methods. Therefore, it can provide reference for the scientific decision-making of emergency management in urban rainstorm water-logging.


2009 ◽  
Author(s):  
Petra Bayerl ◽  
Kristina Lauche ◽  
Margaret Thomson Crichton ◽  
Steven James Sawaryn ◽  
Andy Deady

Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 18
Author(s):  
Matthew D. Powless ◽  
Jesse A. Steinfeldt ◽  
Shelbi E. Fisher ◽  
Patrick McFadden ◽  
Kyle W. Kennedy ◽  
...  

Despite the role of working memory capacity (WMC) in decision making, there is a dearth of empirical literature concerned with working memory and how it relates to tactical decision making in sport. The temporal occlusion paradigm has often been used by sport researchers to improve tactical decision making and, thus, provides a well-established foundation for creating decision-making trainings. Therefore, the purpose of the current study was to explore the implementation of computer-based learning modules to improve the tactical decision making of four high school quarterbacks with varying levels of WMC, utilizing a single-subject, multiple baseline design. The learning modules utilized a temporal occlusion paradigm and present a novel intervention aimed at improving decision making in quarterbacks. Data were analyzed using visual analysis and improvement rate difference (IRD). Overall, results did not demonstrate a causal relationship between changes in accuracy of decision making after implementation of the learning modules but did provide moderate evidence for improvement in reaction time for decision making due to the learning modules. The learning modules were met with positive perceptions from the four participants, and the participant with the lowest WMC showed evidence of improvement in both accuracy and speed of decision making. Limitations as well as implications will be discussed.


Sign in / Sign up

Export Citation Format

Share Document