scholarly journals Interaction between soil salinity and nitrogen on growth and gaseous exchanges in guava

Author(s):  
Idelfonso Leandro Bezerra ◽  
Hans Raj Gheyi ◽  
Reginaldo Gomes Nobre ◽  
Geovani Soares de Lima ◽  
João Batista dos Santos ◽  
...  

This study evaluated the growth and gas exchanges of guava, cv. ‘Paluma’ cultivated in salinized soil and subjected to different nitrogen (N) doses in a protected environment in the municipality of Campina Grande-PB. The experimental design was randomized blocks, in a 5 x 4 factorial arrangement with three replicates, and the treatments resulted from the combination of five salinity levels in the soil saturation extract - ECse (2.15, 3.15,4.15, 5.15 and 6.15 dS m-1) and four N doses (70, 100, 130 and 160% of the recommended N dose). The dose referring to 100% of N corresponded to 541.1 mg of N dm-3 of soil. At 120 and 180 days after (DAT), plant growth was evaluated based on stem diameter (SD), leaf area (LA) and number of leaves (NL). At 210 DAT, the following variables of leaf gas exchanges were evaluated: stomatal conductance (gs), internal CO2 concentration (Ci), transpiration (E) and CO2 assimilation rate (A). ECse above 2.15 dS m-1 reduced stem diameter, leaf area, number of leaves, stomatal conductance, internal CO2 concentration, transpiration and CO2 assimilation rate, in both evaluation periods. N dose above 70% of the recommendation (378.7 mg N dm-3 of soil) did not mitigate the deleterious effects caused by the salt stress on the growth and gas exchanges of guava plants.

2021 ◽  
Vol 39 (1) ◽  
pp. 65-71
Author(s):  
Italo MG Sampaio ◽  
Mário L Silva Júnior ◽  
Ricardo FPM Bittencourt ◽  
Gabriel AM dos Santos ◽  
Fiama KM Nunes ◽  
...  

ABSTRACT In the last years, jambu has become popular and greatly appreciated, due to its remarkable taste. Thus, hydroponically cultivated jambu is promising, since it achieves better yield and production quality. The aim of this study was to evaluate the effect of ionic concentration in nutrient solution on growth, productivity and gas exchange of jambu. The experimental design was completely randomized, with five treatments and four replicates. The treatments consisted of variations of ionic concentration using the nutrient solution proposed by Hoagland & Arnon (25, 50, 75, 100 and 125%). The length of the main stem, stem diameter, number of inflorescence, leaf area, fresh and dry biomass (shoot, root and inflorescence), photosynthesis, stomatal conductance, transpiration, internal CO2 concentration, Ci/Ca ratio and instant carboxylation efficiency were evaluated. Ionic concentrations significantly affected the studied variables, except the stem diameter, the internal CO2 concentration and the Ci/Ca ratio. The number of inflorescences and the leaf area grew linearly with maximum values (37.8 units plant-1 and 1650.8 cm2 plant-1, respectively) obtained in ionic concentration of 125%. Maximum responses were observed for shoot fresh and dry mass (63.9 and 6.9 g plant-1), root fresh and dry mass (16.7 and 2.0 g plant-1) inflorescence fresh and dry mass (11.0 and 1.8 g plant-1), respectively, at ionic concentration of 125%. Liquid photosynthesis, stomatal conductance, transpiration and instant carboxylation efficiency achieved maximum responses of 17.9 µmol CO2 m-2 s-1, 0.3 mol H2O m-2 s-1, 6.3 mmol m-2 s-1 and 0.06 with estimated concentrations of 84, 70, 80 and 83% of ionic strength, respectively. Thus, we concluded that the ionic concentration of 125% is indicated to obtain a greater biomass accumulation.


Author(s):  
Allan R. F. Campos ◽  
Rosiane L. S. de Lima ◽  
Carlos A. V. de Azevedo ◽  
Ronaldo do Nascimento ◽  
Sonivagno S. Silva

ABSTRACT Nitrogen (N) fertilization associated with planting density is a practice that can improve the physiological aspects and consequently increase the yield of a crop. Thus, this study aimed to evaluate the effects of planting density and N levels on the physiological aspects of jatropha in the ‘Agreste’ region of Paraíba. Treatments consisted of four planting densities (833, 1,111, 1,666 and 2,500 plants ha-1) representing the plots and five N doses (0, 40, 80, 120 and 180 kg ha-1) corresponding the subplots. The effects of treatments on CO2 assimilation rate, internal CO2 concentration, transpiration, stomatal conductance, water use efficiency, instantaneous carboxylation efficiency and SPAD index were analysed. Except for stomatal conductance, the other variables were influenced by the interaction between planting densities and N levels. The association of the dose of 80 kg ha-1 with a planting density of 2,200 plants ha-1 provided adequate conditions for the production of plants with increased photosynthetic activity and efficient use of water.


2017 ◽  
Vol 35 (4) ◽  
pp. 571-575 ◽  
Author(s):  
Ewerton M Costa ◽  
Rômulo Magno O Freitas ◽  
Paolo Augustus F Silva ◽  
Elton Lucio Araujo

ABSTRACT The leafminer Liriomyza sativae (Diptera: Agromyzidae) is one of the main pests of melon crop (Cucumis melo) in the Brazilian semiarid. The aims of this study were to determine the damaged leaf area and assess the physiological responses of melon plants submitted to different levels of infestation per larvae of L. sativae. The study was carried out in a greenhouse, using plants of melon of the cultivar Iracema (yellow melon). The design utilized was completely randomized, with five treatments {control (no infestation in the leaves) and four infestation levels (1; 10; 20 and 30 larvae per leaf)} and 10 replications (melon plants). Initially we evaluated the physiological aspects: photosynthetic rate (µmol CO2/m2/s), stomatal conductance (mol H2O/m2/s) internal CO2 concentration (µmol CO2/m2) and leaf transpiration (mmol H2O/m2/s). After the measurements of physiological aspects, the evaluated leaves of each plant were cut close to the petiole and scanned individually with a measuring scale on the side, being the determination of the damaged leaf area performed with the aid of software for processing and analysis of images. The averages of damaged leaf area observed were of 1.2; 6.3; 19.6 and 40.8 cm2 for infestations of 1; 10; 20 and 30 larvae/leaf respectively. In relation to the physiological aspects, the rate of photosynthesis, stomatal conductance and transpiration significantly decreased with the increase of leafminer larvae per leaf. The internal CO2 concentration increased with the increase in the number of larvae per leaf.


Author(s):  
Daniel de A. Carreiro ◽  
Renata A. e Amariz ◽  
Luciana G. Sanches ◽  
Jackson T. Lobo ◽  
Vespasiano B. de Paiva Neto ◽  
...  

ABSTRACT The objective of the present study was to evaluate the influence of the application of fenpropimorph and paclobutrazol on gas exchanges and photosynthetic pigments of ‘Tommy Atkins’ mango grown in the semi-arid region in different evaluation periods. Two experiments were carried out in ‘Tommy Atkins’ mango orchards in the first production cycle between September and December 2018 (first experiment) and between September and December 2019 (second experiment) in Petrolina, PE, Brazil. The experimental design adopted was randomized blocks in split plots in time, 4 × 4 + 1, with four replicates. The plots corresponded to the concentrations of fenpropimorph: 0, 0.7, 1.0, and 1.3 g per linear meter of plant canopy diameter plus the additional paclobutrazol treatment (1 g per linear meter of plant canopy diameter), and the subplots corresponded to the evaluation dates (0, 30, 60, and 90 days after the first application of treatments). The following traits were evaluated: CO2 assimilation rate, stomatal conductance, internal CO2 concentration, transpiration, water use efficiency, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids. The fenpropimorph dose of 1.3 g per linear meter of plant canopy promotes a higher rate of CO2 assimilation; however, paclobutrazol was more effective in the accumulation of chlorophyll a and total chlorophyll, and the use of fenpropimorph did not interfere in the concentration of photosynthetic pigments.


2004 ◽  
Vol 26 (2) ◽  
pp. 206-208 ◽  
Author(s):  
José Moacir Pinheiro Lima Filho

A study was carried out at Embrapa Semi-Árido, Petrolina-PE, Brazil, aiming to understand the gas exchange process of the umbu tree (Spondias tuberosa Arr. Cam.) in the dry and rainy seasons. Stomatal conductance, transpiration, photosynthesis and internal CO2 concentration were obtained with a portable infrared gas analyzer (IRGA). During the dry season the umbu tree showed a much lower stomatal conductance early in the morning, as soon as the vapor pressure deficit increased, apparently affecting CO2 assimilation more than transpiration. The highest values were detected around 6:00 am but decreased to the lowest points between 10:00 am and 2:00 pm. During the rainy season, however, stomatal conductance, transpiration and photosynthesis were significantly higher, reaching the highest values between 8:00 and 10:00 am and the lowest around 2:00 pm. It was also observed at 4:00 pm, mainly during the rainy season, an increase on these variables indicating that the umbu tree exhibits a two-picked daily course of gas exchange.


2020 ◽  
Vol 9 (7) ◽  
pp. e878974508
Author(s):  
Roberta Patrícia de Sousa Silva ◽  
Antonio Lucineudo de Oliveira Freire ◽  
Ivonete Alves Bakke ◽  
Cheila Deisy Ferreira ◽  
Sérvio Túlio Pereira Justino ◽  
...  

The objective of this research was to evaluate the effect of shading on growth and gas exchange of seedlings of Microdesmia rigida, keeping them under the levels of 0% (full sun), 50% and 70% shading, arranged in a completely randomized design (DIC), with four replications. Plant height, stem diameter, height/diameter ratio, absolute growth rate, leaf area, plant dry matter weight, dry root/shoot weight ratio, Dickson Quality Index (DQI), transpiration, stomatal conductance, photosynthesis rate, internal CO2 concentration, chlorophyll contents a, b and total were analysed. There was a reduction in the rate of transpiration and increase in stomatal conductance, photosynthesis rate and internal CO2 concentration with increased shading. Shading decreased the concentration of chlorophyll a while promoting an increase in chlorophyll b and total chlorophyll, with no significant difference between the levels of 50% and 70% of shading. The shaded environments provided greater growth in height, diameter, leaf area, in addition to providing greater accumulation of dry mass and IQD. It is recommended to produce seedlings of M. rigida seedlings, during the nursery phase, under 50% shading, as this condition provides the achievement of better seedling quality indexes.


2021 ◽  
Vol 37 ◽  
pp. e37082
Author(s):  
Francisco Romário Andrade Figueiredo ◽  
João Everthon da Silva Ribeiro ◽  
Jackson Silva Nóbrega ◽  
Wilma Freitas Celedônio ◽  
Reynaldo Teodoro de Fátima ◽  
...  

Physalis peruviana L. is a solanacea that has been gaining prominence due to its fruits presenting good acceptance in the national and international market. However, several abiotic factors, such as salinity, can cause physiological disturbances in plants, and these changes may be of greater or lesser intent according to species. Therefore, the objective of the present work was to evaluate the physiological behavior of P. peruviana submitted to different fluxes of photosynthetically active photons (PPFD) and saline stress. The experimental design was a randomized block design with three saline levels (ECw) (0.5, 2.75 and 5.00 dS m-1) with four replications. Gas exchange measurements were performed with a portable infrared gas analyzer. Liquid CO2 assimilation, stomatal conductance, internal CO2 concentration, water use efficiency and instantaneous carboxylation efficiency were measured. Data were subjected to analysis of variance by F test and in cases of significance applied to regression analysis. The increase in PPFD provided reductions in stomatal conductance up to the density of approximately 400 μmol m-2s-1, being more pronounced in ECw of 2.75 and 5.0 dS m-1. The maximum CO2 assimilation rates in the three salinities are different according to the PPFD. The salinity of irrigation water reduced the quantum efficiency of photosynthesis in P. peruviana plants.


2000 ◽  
Vol 27 (5) ◽  
pp. 451 ◽  
Author(s):  
Mark J. Hovenden ◽  
Tim Brodribb

Gas exchange measurements were made on saplings of Southern Beech, Nothofagus cunninghamii (Hook.) Oerst. collected from three altitudes (350, 780 and 1100 m above sea level) and grown in a common glasshouse trial. Plants were grown from cuttings taken 2 years earlier from a number of plants at each altitude in Mt Field National Park, Tasmania. Stomatal density increased with increasing altitude of origin, and stomatal con-ductance and carbon assimilation rate were linearly related across all samples. The altitude of origin influenced thestomatal conductance and therefore carbon assimilation rate, with plants from 780 m having a greater photosynthetic rate than those from 350 m. The intercellular concentration of CO2 as a ratio of external CO2 concentration (ci/ca) was similar in all plants despite the large variation in maximum stomatal conductance. Carboxylation efficiency was greater in plants from 780 m than in plants from 350 m. Altitude of origin has a strong influence on the photo-synthetic performance of N. cunninghamii plants even when grown under controlled conditions, and this influence is expressed in both leaf biochemistry (carboxylation efficiency) and leaf morphology (stomatal density).


Author(s):  
Antonio F. Monteiro Filho ◽  
Márcia R. Q. A. Azevedo ◽  
Carlos A. V. de Azevedo ◽  
Josely D. Fernandes ◽  
Carisa R. da Silva ◽  
...  

ABSTRACT The objective of this study was to evaluate the growth of crisp lettuce in hydroponic cultivation, following the nutrient film technique (NFT), using optimized mineral and organomineral nutrient solutions. The experiment was set in 8 x 3 factorial scheme, with treatments distributed in randomized blocks and split plots, with three replicates. The plots corresponded to eight nutrient solutions, of which four were mineral solutions with chemical composition suggested by Bernardes, Furlani, Castellane & Araújo and Ueda, and four were organomineral solutions, suggested by this research with chemical composition similar to those of the previously mentioned mineral solutions. The subplots corresponded to three varieties of crisp lettuce: Thaís, Vanda and Verônica. At 25 days after transplanting, the following parameters were evaluated: stem and crown diameter, root length, leaf area and number of leaves. For stem and crown diameters and number of leaves, the mineral solutions promoted the highest means. The mineral solution of Furlani and the organomineral solutions, except the modified solution of Castellane & Araújo, promoted the greatest root lengths. The smallest leaf area was obtained in the organomineral solution of Ueda. The cultivar Verônica had the highest root length and stem diameter.


2020 ◽  
Vol 9 (5) ◽  
pp. e43952870
Author(s):  
Magnólia Martins Alves ◽  
Manoel Bandeira de Albuquerque ◽  
Renata Ranielly Pedroza Cruz ◽  
Mário Luiz Farias Cavalcanti

The availability of light is one of the factors that most limits the photosynthesis of juvenile trees in the understory of the forest. The study was carried out in the Mata do Pau-Ferro State Park, located in the city of Areia, PB. The objective of this study was to evaluate how gas exchanges occur in individuals of Psychotria colorata (Willd. Ex Roem & Schult.), Senna georgica Irwin & Barneby, Himatanthus phagedaenicus (Mart.) Woodson, Solanum swartzianum Roem. & Schult, Psychotria carthagenensis Jacq.e Psychotria hoffmannseggiana (Willd. ex Schult.) in the understory of a remnant of Mata Atlântica. The rate of photosynthesis (A), transpiration (E), stomatal conductance (Gs), internal CO2 concentration (Ci) leaf temperature-air temperature (°C), and internal carbon (Ci), instantaneous efficiency of water use (EUA) (A/E), Intrinsic efficiency of water use (EiUC) (A/Gs) and the intrinsic efficiency of carboxylation (ratio A/Ci). The rates of maximum photosynthesis (A), photosynthesis (E) and stomatal conductance (Gs) were shown to be influenced by the time of day, as there was no interference of external factors in the diurnal patterns of gas exchange, variations are due to endogenous factors, probably due to the circadian rhythm. The parameter of the gas exchange of sub-forest species responds differently, in the small variations in the luminosity levels of the forest understory


Sign in / Sign up

Export Citation Format

Share Document