Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in Southern Beech, Nothofagus cunninghamii

2000 ◽  
Vol 27 (5) ◽  
pp. 451 ◽  
Author(s):  
Mark J. Hovenden ◽  
Tim Brodribb

Gas exchange measurements were made on saplings of Southern Beech, Nothofagus cunninghamii (Hook.) Oerst. collected from three altitudes (350, 780 and 1100 m above sea level) and grown in a common glasshouse trial. Plants were grown from cuttings taken 2 years earlier from a number of plants at each altitude in Mt Field National Park, Tasmania. Stomatal density increased with increasing altitude of origin, and stomatal con-ductance and carbon assimilation rate were linearly related across all samples. The altitude of origin influenced thestomatal conductance and therefore carbon assimilation rate, with plants from 780 m having a greater photosynthetic rate than those from 350 m. The intercellular concentration of CO2 as a ratio of external CO2 concentration (ci/ca) was similar in all plants despite the large variation in maximum stomatal conductance. Carboxylation efficiency was greater in plants from 780 m than in plants from 350 m. Altitude of origin has a strong influence on the photo-synthetic performance of N. cunninghamii plants even when grown under controlled conditions, and this influence is expressed in both leaf biochemistry (carboxylation efficiency) and leaf morphology (stomatal density).


2000 ◽  
Vol 69 (5) ◽  
pp. 576-583 ◽  
Author(s):  
Genaro A. Reynoso ◽  
Masahiro Morokuma ◽  
Yoshie Miura ◽  
Atsushi Hasegawa ◽  
Masanori Goi


2004 ◽  
Vol 31 (5) ◽  
pp. 471 ◽  
Author(s):  
Stephen O. Kern ◽  
Mark J. Hovenden ◽  
Gregory J. Jordan

The impact of differences in leaf shape, size and arrangement on the efficiency of light interception, and in particular the avoidance of photoinhibition, are poorly understood. We therefore estimated light exposure of branches in the cool temperate rainforest tree, Nothofagus cunninghamii (Hook.) Oerst., in which leaf shape, size and arrangement vary systematically with altitude and geographic origin. Measurements of incident photosynthetic photon flux density (PPFD) were made in the laboratory at solar angles corresponding to noon at summer solstice, winter solstice and equinox on branches collected from a common garden experiment. Tasmanian plants showed more self-shading than Victorian plants in summer and equinox. This was related to branch angle, leaf arrangement and leaf shape. Using a modelled light response-curve, we estimated the carbon assimilation rate and the flux density of excess photons at different incident PPFD. Victorian plants had higher predicted assimilation rates than Tasmanian plants in summer and equinox, but were exposed to substantially greater levels of excess photons. Because of the shape of the light-response curve, self-shading appears to reduce the plant's exposure to excess photons, thus providing photoprotection, without substantially reducing the carbon assimilation rate. This is dependent on both regional origin and season.



2020 ◽  
Author(s):  
Wellington L Almeida ◽  
Rodrigo T Ávila ◽  
Junior P Pérez-Molina ◽  
Marcela L Barbosa ◽  
Dinorah M S Marçal ◽  
...  

Abstract The overall coordination between gas exchanges and plant hydraulics may be affected by soil water availability and source-to-sink relationships. Here we evaluated how branch growth and mortality, leaf gas exchange and metabolism are affected in coffee (Coffea arabica L.) trees by drought and fruiting. Field-grown plants were irrigated or not, and maintained with full or no fruit load. Under mild water deficit, irrigation per se did not significantly impact growth but markedly reduced branch mortality in fruiting trees, despite similar leaf assimilate pools and water status. Fruiting increased net photosynthetic rate in parallel with an enhanced stomatal conductance, particularly in irrigated plants. Mesophyll conductance and maximum RuBisCO carboxylation rate remained unchanged across treatments. The increased stomatal conductance in fruiting trees over nonfruiting ones was unrelated to internal CO2 concentration, foliar abscisic acid (ABA) levels or differential ABA sensitivity. However, stomatal conductance was associated with higher stomatal density, lower stomatal sensitivity to vapor pressure deficit, and higher leaf hydraulic conductance and capacitance. Increased leaf transpiration rate in fruiting trees was supported by coordinated alterations in plant hydraulics, which explained the maintenance of plant water status. Finally, by preventing branch mortality, irrigation can mitigate biennial production fluctuations and improve the sustainability of coffee plantations.



2020 ◽  
Vol 11 ◽  
pp. e3245
Author(s):  
Firmino Nunes de Lima ◽  
Osvaldo Kiyoshi Yamanishi ◽  
Márcio de Carvalho Pires ◽  
Elias Divino Saba ◽  
Aline Rodrigues Pereira ◽  
...  

In Brazil, the nutritional requirements of the blueberry are not sufficiently known, thus requiring further research on the management of mineral fertilization. In this perspective, this work aimed to evaluate physiological attributes of Southern Highbush blueberry plants cv. Biloxi as a function of nitrogen fertigation in Brasília-DF. The experiment was conducted from August 2018 to July 2019, in the Fruit Sector of the Experimental Biology Station of the University of Brasilia (UnB), Federal District. This experiment adopted a randomized block design, with four treatments: 10; 20; 30, and 40 g of N plant-1, 8 replications, and 5 plants per experimental plot. The following variables were measured: net photosynthesis rate (A), transpiration (E), stomatal conductance (gs), internal CO2 concentration (Ci), instantaneous water-use efficiency (WUE), carboxylation efficiency (CE), SPAD index (SPAD) and leaf nitrogen (N). There was an effect of the different nitrogen doses applied on the physiological attributes. The plants of the blueberry cultivar Biloxi increased their photosynthetic rates at doses up to 30 g of N plant-1. Nitrogen rates did not influence stomatal conductance nor did they provide improvements in the carboxylation efficiency of the blueberry plants. Under the conditions of the present work, the highest N leaf contents were obtained with the application of 30 g N plant-1, and values above this concentration did not correspond to higher net photosynthesis rates, transpiration, and CO2 concentration in the leaf mesophyll.



2019 ◽  
Vol 37 ◽  
Author(s):  
M.R. DURIGON ◽  
A.S. CAMERA ◽  
J. CECHIN ◽  
L. VARGAS ◽  
G. CHAVARRIA

ABSTRACT: Canola is an important rotation crop for the winter season and the use of atrazine-resistant hybrids can lead to an increase in yield. This work was aimed at evaluating the effect of atrazine on photochemical and biochemical processes of photosynthesis in triazine-resistant canola. The experiment was conducted in a greenhouse, with triazine-resistant hybrid Hyola® 555TT, in a randomized block design with three replications. The treatments consisted of application or no application of atrazine on canola plants. The plants were assessed at one, three, five, and eight days after application (DAA) for chlorophyll indexes, modulated chlorophyll a fluorescence and gas exchange. Chlorophyll indexes were higher in canola plants treated with atrazine. Application of atrazine caused an increase in fluorescence at steady state and a reduction in quantum efficiency of photosystem II and electron transport rate, at 1 DAA, and a reduction in photochemical quenching, at 1 and 3 DAA. Lower stomatal conductance, at 1 DAA, and higher net carbon assimilation rate, at 8 DAA, were found in plants treated with atrazine. The application of atrazine temporarily reduces electron transport between photosystems and increases chlorophyll indexes in resistant canola plants, raising the net carbon assimilation rate at eight days after application.



1996 ◽  
Vol 121 (2) ◽  
pp. 264-268 ◽  
Author(s):  
Gary W. Stutte ◽  
Neil C. Yorio ◽  
Raymond M. Wheeler

The effect of photoperiod (PP) on net carbon assimilation rate (Anet) and starch accumulation in newly mature canopy leaves of `Norland' potato (Solanum tuberosum L.) was determined under high (412 ∝mol·m-2·s-1) and low (263 ∝mol·m-2·s-1) photosynthetic photon flux (PPF) conditions. The Anet decreased from 13.9 to 11.6 and 9.3 μmol·m-2·s-1, and leaf starch increased from 70 to 129 and 118 mg·g-1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/6, and 24/0, respectively. Longer PP had a greater effect with high PPF conditions than with low PPF treatments, with high PPF showing greater decline in Anet. Photoperiod did not affect either the CO2 compensation point (50 μmol·mol-1) or CO2 saturation point (1100-1200 μmol·mol-1) for Anet. These results show an apparent limit to the amount of starch that can be stored (≈15% DM) in potato leaves. An apparent feedback mechanism exists for regulating Anet under high PPF, high CO2, and long PP, but there was no correlation between Anet and starch concentration in individual leaves. This suggests that maximum Anet cannot be sustained with elevated CO2 conditions under long PP (≥12 hours) and high PPF conditions. If a physiological limit exists for the fixation and transport of carbon, then increasing photoperiod and light intensity under high CO2 conditions is not the most appropriate means to maximize the yield of potatoes.



1988 ◽  
Vol 15 (4) ◽  
pp. 495 ◽  
Author(s):  
SP Robinson ◽  
WJR Grant ◽  
BR Loveys

Feeding 10-5M (�)-abscisic acid (ABA) via the petioles of detached leaves of apricot (Prunus armeniaca) or sunflower (Helianthus annuus) decreased stomatal conductance and assimilation rate but not the calculated intercellular CO2 concentration (Ci) suggesting non-stomatal as well as stomatal inhibition of photosynthesis. Evidence for non-stomatal inhibition was not observed in spinach (Spinacia oleracea). There was no significant decrease in rates of electron transport nor ribulosebisphosphate carboxylase (Rubisco) activity in intact chloroplasts isolated from ABA-treated sunflower leaves. Oxygen evolution by leaf discs with 3% CO2 in the gas phase was inhibited in ABA- treated sunflower and apricot leaves but not in spinach; the inhibition was only half as great as the inhibition of assimilation rate at ambient CO2. The quantum yield of oxygen evolution decreased in ABA-treated sunflower leaves in proportion to the decrease in the light-saturated rate. There was no significant difference in room temperature chlorophyll fluorescence of ABA-treated leaves compared to controls. Stomatal conductance of sunflower leaves decreased by more than 90% when the CO2 concentration was increased from 340 ppm to 1000 ppm but at much higher CO2 concentrations the stomata appeared to reopen. Stomatal conductance at 2-3% CO2 (20 000-30 000 ppm) was 50% that at ambient CO2. This reopening of stomata at high CO2 was inhibited in previously water-stressed or ABA-treated plants. In unstressed leaves, the maximum rate of oxygen evolution occurred at 0.5-2% CO2 but in ABA-treated leaves 10-15% CO2 was required for maximum rates. It is suggested that stomatal closure may limit photosynthesis in ABA-treated or previously water-stressed leaves even at the relatively high CO2 concentrations normally used in the leaf disc oxygen electrode. The inhibition of photosynthesis by ABA is largely overcome at saturating CO2. The apparent non-stomatal inhibition suggested by gas exchange measurements and the decreased quantum yield could be explained by patchy stomatal closure in response to ABA.



Sign in / Sign up

Export Citation Format

Share Document