scholarly journals Effects of different operating conditions on total nitrogen removal routes and nitrous oxide emissions in a lab-scale activated sludge system

Author(s):  
Renato Pereira Ribeiro ◽  
Débora Cynamon Kligerman ◽  
William Zamboni de Mello ◽  
Denise Da Piedade Silva ◽  
Renatah Da Fonseca Correia ◽  
...  

This study sought to determine the effects of different operating conditions, such as variable organic loading, different sludge retention times (SRTs) and airflow rates, limited dissolved oxygen (DO) concentrations and ammonium (NH4+) shock loading on total nitrogen (TN) removal routes and nitrous oxide (N2O) emissions in a lab-scale activated sludge system. Short SRT (5 days) combined with very low DO levels (0.5 mg L-1) were responsible for lower TKN oxidation efficiencies and, consequently, negligible NO2- accumulation rates. These results suggest that nitrification efficiency was hampered by the oxidation of organic matter, with a large part of TN removed by sludge waste process. As the SRT increased (from 5 to 10 days) and DO was set to 1.0 mg L-1, TKN oxidation rates and NO2- accumulation reached their maxima, which are thought to be the optimal conditions for both organic matter oxidation and partial nitrification. Under these conditions, gas transfer to the atmosphere became the preferential route for TN removal instead of incorporation into the sludge waste. However, N2O contribution is estimated as less than 5.6% (with respect to TN in the influent). Insufficient aeration and stress conditions (such as NH4+ shock loading) can cause limited DO conditions and NO2- accumulation, leading to higher amounts of emitted N2O. Therefore, the adequate control of DO concentrations is a key factor to avoid NO2- accumulation and consequently high N2O emissions.

2017 ◽  
Vol 76 (9) ◽  
pp. 2337-2349 ◽  
Author(s):  
Renato P. Ribeiro ◽  
Rodrigo F. Bueno ◽  
Roque P. Piveli ◽  
Débora C. Kligerman ◽  
William Z. de Mello ◽  
...  

Abstract The continuous measurements of N2O emissions from the aeration tanks of three activated sludge wastewater treatment plants (WWTPs) operated with biological nitrogen removal (BNR) and non-BNR were performed during the different operating conditions of several parameters, such as aeration, dissolved oxygen (DO) profiling and organic shock loading (with landfill leachate). The nitrification process is the main driving force behind N2O emission peaks. There are indications that the variation of the air flow rate influenced N2O emissions; high N2O emissions denote over-aeration conditions or incomplete nitrification, with accumulation of NO2− concentrations. Thus, continuous measurements of N2O emissions can provide information on aeration adequacy and the efficiency of complete nitrification, with major focus on DO control, in order to reduce N2O emissions. An additional concern is the observed propensity of WWTPs in developing countries to receive landfill leachates in their wastewater systems. This practice could have adverse effects on climate change, since wastewater treatment during periods of organic shock loading emitted significantly higher amounts of N2O than without organic shock loading. In short, non-BNR WWTPs are subject to high N2O emissions, in contrast to BNR WWTP with controlled nitrification and denitrification processes.


Química Nova ◽  
2013 ◽  
Vol 36 (1) ◽  
pp. 16-20 ◽  
Author(s):  
William Z. de Mello ◽  
Renato P. Ribeiro ◽  
Ariane C. Brotto ◽  
Débora C. Kligerman ◽  
Andrezza de S. Piccoli ◽  
...  

Author(s):  
A. Kuokkanen ◽  
K. Blomberg ◽  
A. Mikola ◽  
M. Heinonen

Abstract Nitrous oxide emissions can contribute significantly to the carbon footprint of municipal wastewater treatment plants even though emissions from conventional nitrogen removal processes are assumed to be moderate. An increased risk for high emissions can occur in connection with process disturbances and nitrite (NO2−) accumulation. This work describes the findings at a large municipal wastewater treatment plant where the levels of NO2− in the activated sludge process effluent were spontaneously and strongly increased on several activated sludge lines which was suspected to be due to shortcut nitrogen removal that stabilized for several months. The high NO2− levels were linked to a dramatic increase in nitrous oxide (N2O) emissions. As much as over 20% of the daily influent nitrogen load was emitted as N2O. These observations indicate that highly increased NO2− levels can occur in conventional activated sludge processes and result in high nitrous oxide emissions. They also raise questions concerning the risk of increased greenhouse gas (GHG) emissions of the nitritation-denitritation processes – although the uncontrolled nature of the event described here must be taken into consideration – and underline the importance of continuous monitoring and control of N2O emissions.


2015 ◽  
Vol 22 (15) ◽  
pp. 11840-11849 ◽  
Author(s):  
Ariane C. Brotto ◽  
Débora C. Kligerman ◽  
Samara A. Andrade ◽  
Renato P. Ribeiro ◽  
Jaime L. M. Oliveira ◽  
...  

Engevista ◽  
2015 ◽  
Vol 17 (3) ◽  
pp. 375 ◽  
Author(s):  
Renato Pereira Ribeiro ◽  
Jaime Lopes da Mota Oliveira ◽  
Débora Cynamon Kligerman ◽  
Renata Barbosa Alvim ◽  
Samara Almeida Andrade ◽  
...  

Nitrous oxide emissions were determined in three campaigns in the aeration tank of a full scale conventional activated sludge wastewater treatment plant. During these experiments, the carbonaceous organic matter (BOD and COD) removal was high and rather constant (97-98% and 93-96%). The results indicate that the concentration of total nitrogen in the influent wastewater, especially NH4+, and the aeration flow rate are key controlling factor of N2O emissions from the aeration tank. Nitrification was the major source of N2O, suggested by the behavior of DO concentrations, NO3-/NH4+ ratio and pH values along the six interlinked zones of the aeration tank. Excessive air flow intensified N2O transfer from the liquor to the atmosphere by air stripping.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


2021 ◽  
Vol 13 (9) ◽  
pp. 4928
Author(s):  
Alicia Vanessa Jeffary ◽  
Osumanu Haruna Ahmed ◽  
Roland Kueh Jui Heng ◽  
Liza Nuriati Lim Kim Choo ◽  
Latifah Omar ◽  
...  

Farming systems on peat soils are novel, considering the complexities of these organic soil. Since peat soils effectively capture greenhouse gases in their natural state, cultivating peat soils with annual or perennial crops such as pineapples necessitates the monitoring of nitrous oxide (N2O) emissions, especially from cultivated peat lands, due to a lack of data on N2O emissions. An on-farm experiment was carried out to determine the movement of N2O in pineapple production on peat soil. Additionally, the experiment was carried out to determine if the peat soil temperature and the N2O emissions were related. The chamber method was used to capture the N2O fluxes daily (for dry and wet seasons) after which gas chromatography was used to determine N2O followed by expressing the emission of this gas in t ha−1 yr−1. The movement of N2O horizontally (832 t N2O ha−1 yr−1) during the dry period was higher than in the wet period (599 t N2O ha−1 yr−1) because of C and N substrate in the peat soil, in addition to the fertilizer used in fertilizing the pineapple plants. The vertical movement of N2O (44 t N2O ha−1 yr−1) was higher in the dry season relative to N2O emission (38 t N2O ha−1 yr−1) during the wet season because of nitrification and denitrification of N fertilizer. The peat soil temperature did not affect the direction (horizontal and vertical) of the N2O emission, suggesting that these factors are not related. Therefore, it can be concluded that N2O movement in peat soils under pineapple cultivation on peat lands occurs horizontally and vertically, regardless of season, and there is a need to ensure minimum tilling of the cultivated peat soils to prevent them from being an N2O source instead of an N2O sink.


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


Sign in / Sign up

Export Citation Format

Share Document