scholarly journals Simple F Test Reveals Gene-Gene Interactions in Case-Control Studies

2012 ◽  
Vol 6 ◽  
pp. BBI.S9867 ◽  
Author(s):  
Guanjie Chen ◽  
Ao Yuan ◽  
Jie Zhou ◽  
Amy R. Bentley ◽  
Adebowale Adeyemo ◽  
...  

Missing heritability is still a challenge for Genome Wide Association Studies (GWAS). Gene-gene interactions may partially explain this residual genetic influence and contribute broadly to complex disease. To analyze the gene-gene interactions in case-control studies of complex disease, we propose a simple, non-parametric method that utilizes the F-statistic. This approach consists of three steps. First, we examine the joint distribution of a pair of SNPs in cases and controls separately. Second, an F-test is used to evaluate the ratio of dependence in cases to that of controls. Finally, results are adjusted for multiple tests. This method was used to evaluate gene-gene interactions that are associated with risk of Type 2 Diabetes among African Americans in the Howard University Family Study. We identified 18 gene-gene interactions ( P < 0.0001). Compared with the commonly-used logistical regression method, we demonstrate that the F-ratio test is an efficient approach to measuring gene-gene interactions, especially for studies with limited sample size.

2018 ◽  
Author(s):  
Omer Weissbrod ◽  
Jonathan Flint ◽  
Saharon Rosset

AbstractMethods that estimate heritability and genetic correlations from genome-wide association studies have proven to be powerful tools for investigating the genetic architecture of common diseases and exposing unexpected relationships between disorders. Many relevant studies employ a case-control design, yet most methods are primarily geared towards analyzing quantitative traits. Here we investigate the validity of three common methods for estimating genetic heritability and genetic correlation. We find that the Phenotype-Correlation-Genotype-Correlation (PCGC) approach is the only method that can estimate both quantities accurately in the presence of important non-genetic risk factors, such as age and sex. We extend PCGC to work with summary statistics that take the case-control sampling into account, and demonstrate that our new method, PCGC-s, accurately estimates both heritability and genetic correlations and can be applied to large data sets without requiring individual-level genotypic or phenotypic information. Finally, we use PCGC-S to estimate the genetic correlation between schizophrenia and bipolar disorder, and demonstrate that previous estimates are biased due to incorrect handling of sex as a strong risk factor. PCGC-s is available at https://github.com/omerwe/PCGCs.


2020 ◽  
Vol 87 (2) ◽  
pp. 57-64
Author(s):  
Filippova Tamara Vladimirovna ◽  
Khafizov Кamil Faridovich ◽  
Rudenko Vadim Igorevich ◽  
Rapoport Leonid Mikhailovich ◽  
Tsarichenko Dmitry Georgievich ◽  
...  

The article summarizes the findings of Russian and international studies of the genetic aspects of polygenic urolithiasis associated with impairment of calcium metabolism. The article analyzes the genetic risk factors of polygenic nephrolithiasis that show significant association with the disease in case-control studies and Genome-Wide Association Studies (16 genes). We described the gene functions involved in concrement formation in polygenic nephrolithiasis. The modern molecular and genetic technologies (DNA microarray, high-throughput DNA sequencing, etc.) enable identification of the genetic predisposition to a specific disease, realization of the individualized treatment of the patient, and carrying out timely preventive measures among the proband’s relatives.


2019 ◽  
Author(s):  
Rounak Dey ◽  
Seunggeun Lee

AbstractIn genome-wide association studies (GWASs), genotype log-odds ratios (LORs) quantify the effects of the variants on the binary phenotypes, and calculating the genotype LORs for all of the markers is required for several downstream analyses. Calculating genotype LORs at a genome-wide scale is computationally challenging, especially when analyzing large-scale biobank data, which involves performing thousands of GWASs phenome-wide. Since most of the binary phenotypes in biobank-based studies have unbalanced (case : control = 1 : 10) or often extremely unbalanced (case : control = 1 : 100) case-control ratios, the existing methods cannot provide a scalable and accurate way to estimate the genotype LORs. The traditional logistic regression provides biased LOR estimates in such situations. Although the Firth bias correction method can provide unbiased LOR estimates, it is not scalable for genome-wide or phenome-wide scale association analyses typically used in biobank-based studies, especially when the number of non-genetic covariates is large. On the other hand, the saddlepoint approximation-based test (fastSPA), which can provide accurate p values and is scalable to analyse large-scale biobank data, does not provide the genotype LOR estimates as it is a score-based test. Here, we propose a scalable method based on score statistics, to accurately estimate the genotype LORs, adjusting for non-genetic covariates. Comparing to the Firth method, our proposed method reduces the computational complexity from O(nK2 + K3) to O(n), where n is the sample-size, and K is the number of non-genetic covariates. Our method is ~ 10x faster than the Firth method when 15 covariates are being adjusted for. Through extensive numerical simulations, we show that the proposed method is both scalable and accurate in estimating the genotype ORs in genome-wide or phenome-wide scale.


2018 ◽  
Author(s):  
Iryna Lobach ◽  
Joshua Sampson ◽  
Siarhei Lobach ◽  
Alexander Alekseyenko ◽  
Alexandra Pryatinska ◽  
...  

AbstractOne of the most important research areas in case-control Genome-Wide Association Studies is to determine how the effect of a genotype varies across the environment or to measure the gene-environment interaction (GxE). We consider the scenario when some of the “healthy” controls actually have the disease and when the frequency of these latent cases varies by the environmental variable of interest. In this scenario, performing logistic regression of clinically defined case status on the genetic variant, environmental variable, and their interaction will result in biased estimates of GxE interaction. Here, we derive a general theoretical approximation to the bias in the estimates of the GxE interaction and show, through extensive simulation, that this approximation is accurate in finite samples. Moreover, we apply this approximation to evaluate the bias in the effect estimates of the genetic variants related to mitochondrial proteins a large-scale Prostate Cancer study.


2018 ◽  
Author(s):  
Lorin Crawford ◽  
Xiang Zhou

AbstractEpistasis, commonly defined as the interaction between genetic loci, is an important contributor to the genetic architecture underlying many complex traits and common diseases. Most existing epistatic mapping methods in genome-wide association studies explicitly search over all pairwise or higher-order interactions. However, due to the potentially large search space and the resulting multiple testing burden, these conventional approaches often suffer from heavy computational cost and low statistical power. A recently proposed attractive alternative for mapping epistasis focuses instead on detecting marginal epistasis, which is defined as the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact — thus, potentially alleviating much of the statistical and computational burden associated with conventional epistatic mapping procedures. However, previous marginal epistatic mapping methods are based on quantitative trait models. As we will show here, these lack statistical power in case-control studies. Here, we develop a liability threshold mixed model that extends marginal epistatic mapping to case-control studies. Our method properly accounts for case-control ascertainment and the binary nature of case-control data. We refer to this method as the liability threshold marginal epistasis test (LT-MAPIT). With simulations, we illustrate the benefits of LT-MAPIT in terms of providing effective type I error control, and being more powerful than both existing marginal epistatic mapping methods and conventional explicit search-based approaches in case-control data. We finally apply LT-MAPIT to identify both marginal and pairwise epistasis in seven complex diseases from the Wellcome Trust Case Control Consortium (WTCCC) 1 study.


2011 ◽  
Vol 8 (2) ◽  
pp. 204-221 ◽  
Author(s):  
Gürkan Üstünkar ◽  
Yeşim Aydın Son

Summary Recently, there has been increasing research to discover genomic biomarkers, haplotypes, and potentially other variables that together contribute to the development of diseases. Single Nucleotide Polymorphisms (SNPs) are the most common form of genomic variations and they can represent an individual’s genetic variability in greatest detail. Genome-wide association studies (GWAS) of SNPs, high-dimensional case-control studies, are among the most promising approaches for identifying disease causing variants. METU-SNP software is a Java based integrated desktop application specifically designed for the prioritization of SNP biomarkers and the discovery of genes and pathways related to diseases via analysis of the GWAS case-control data. Outputs of METU-SNP can easily be utilized for the downstream biomarkers research to allow the prediction and the diagnosis of diseases and other personalized medical approaches. Here, we introduce and describe the system functionality and architecture of the METU-SNP. We believe that the METU-SNP will help researchers with the reliable identification of SNPs that are involved in the etiology of complex diseases, ultimately supporting the development of personalized medicine approaches and targeted drug discoveries


Author(s):  
Tiit Nikopensius ◽  
Priit Niibo ◽  
Toomas Haller ◽  
Triin Jagomägi ◽  
Ülle Voog-Oras ◽  
...  

Abstract Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points• Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition.• Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe.• The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci.• The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiaowei Zhu ◽  
Weiyang Bai ◽  
Houfeng Zheng

AbstractOsteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.


Sign in / Sign up

Export Citation Format

Share Document