INFLUENCE OF SOIL MOISTURE STRESS APPLIED AT VARIOUS STAGES OF GROWTH ON THE YIELD COMPONENTS OF CHINOOK WHEAT

1968 ◽  
Vol 48 (3) ◽  
pp. 313-320 ◽  
Author(s):  
C. A. Campbell

Two series of moisture treatments were used to determine if there was a specific growth stage at which low soil moisture stress caused poor seed set in Chinook wheat, and also to determine whether grain yield could be maximized by manipulating time of increasing or decreasing moisture stress.Maintaining soil moisture at 25 to 10% (dry) until the shot-blade stage produced 80% seed set, compared with only 30% seed set when moisture was maintained at 25% to 16% (wet) during the same period. Increasing or decreasing the soil moisture stress at different growth stages had little effect on the number of florets per head or the mean kernel weight. Under the conditions of this experiment, the number of heads and percent seed set were the main components influencing grain yield. The highest grain yields were obtained when plants were grown under dry conditions until late shot-blade and under wet conditions thereafter. Conversely, minimum grain yields were realized where plants were grown under wet conditions until late shot-blade and under dry conditions thereafter. Straw yield was closely related to the total moisture used.

1964 ◽  
Vol 15 (5) ◽  
pp. 729 ◽  
Author(s):  
D Aspinall ◽  
PB Nicholls ◽  
LH May

The effects of soil moisture stress on tillering, stem elongation, and grain yield of barley (cv. Prior) have been studied by subjecting the plants to periods of stress at different stages of development. Soil moisture stress treatments consisted of repeated short cycles of stress, single short cycles (both in large pots), or single long cycles (in large lysimeters). The data collected support the contention that the organ which is growing most rapidly at the time of a stress is the one most affected. Grain numbers per ear were seriously affected by stress occurring prior to anthesis, an effect probably associated with the process of spikelet initiation and, later, with the formation of the gametes. Grain size, on the other hand, was reduced more by stress at anthesis and shortly after. Elongation of the internodes was reduced mostly by stress at or just before earing, and was less seriously affected by earlier or later stress. Tillering, although being suppressed during a drought cycle, was actually stimulated upon rewatering. The effect was greater the earlier the period of stress, and was probably related to nutrient uptake and distribution within the plant.


1989 ◽  
Vol 3 (2) ◽  
pp. 238-243 ◽  
Author(s):  
Frederick P. Salzman ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Experiments were conducted in 1985 and 1986 at three locations in eastern Arkansas to evaluate red rice control in soybeans with postemergence grass herbicides and plant growth regulators applied singly or sequentially at early to late-tillering growth stages of red rice. Haloxyfop at 0.21 kg ai/ha and quizalofop at 0.14 kg ai/ha applied singly or sequentially and fluazifop at 0.21 kg ai/ha applied sequentially consistently controlled red rice and suppressed seedhead production in soybeans. Mid-season treatments were not beneficial when high soil moisture stress conditions existed. Mefluidide or sethoxydim applied singly or sequentially or amidochlor applied singly provided erratic control and seedhead suppression of red rice in soybeans.


1955 ◽  
Vol 6 (4) ◽  
pp. 365 ◽  
Author(s):  
RO Slatyer

Studies of the water relations of cotton, peanuts, and grain sorghum were made at Katherine, N.T., on crops grown under natural rainfall during the 1952-53 rainfall season. In the early part of this season, rainfall was more or less normal and little evidence of stress was seen in the plants. The latter part, however, was abnormally dry and resulted in the appearance of severe water stress symptoms in all crops. The water balance of the plants through the season was followed using Weatherley's (1950) "relative turgidity" technique of leaf turgor measurement. In each crop the relative turgidity level was maintained at a fairly high level until the onset of dry conditions, when a progressive decline commenced. This decline, although continuous, appeared to be in two stages. It was felt that the lag of absorption behind transpiration which resulted in loss of turgor was initially due to the rapid rise in transpiration, which followed the increase in atmospheric aridity with the onset of the dry period. As atmospheric conditions became more static, the continued decline in turgor was attributed primarily to the influence of soil moisture stress, in limiting absorption. Of the three crops, grain sorghum appeared to have the best-developed root system and also the most effective internal control over transpiration. Cotton appeared to be least well equipped in these respects. These features were reflected in generally higher turgor levels in grain sorghum than in other crops, and in a slower rate of decrease in turgor with the onset of dry weather. This decrease was particularly rapid in cotton. This relative resistance to turgor loss was in turn reflected in growth rate reductions in cotton as soon as soil moisture stress appeared, but not in grain sorghum until severe soil moisture stress was evident. The peanut responses throughout appeared intermediate between those of the other two crops.


1979 ◽  
Vol 15 (4) ◽  
pp. 315-320 ◽  
Author(s):  
C. S. Kamara ◽  
W. Godfrey-Sam-Aggrey

SUMMARYAn experiment was conducted during the minor season in Sierra Leone to determine the optimum planting date for a photo-insensitive cowpea cultivar and study the relations between total rainfall and soil moisture available at different growth stages. Cowpeas planted in early September produced the tallest plants and higher grain yields than from other planting dates, since they benefited from 90% of the season's rainfall and made use of stored soil moisture. Average weekly rainfall or soil moisture in the top 15 cm of soil, recorded from planting to 50% flowering, can be used to predict cowpea grain yield.


2016 ◽  
Vol 15 (1) ◽  
pp. 93-111
Author(s):  
O. S. SAKARIYAWO ◽  
S. O. OLAGUNJU ◽  
M. O. ATAYESE ◽  
K. A. OKELEYE ◽  
P. A.S., SOREMI ◽  
...  

A pot experiment was conducted in the Screen house of Federal University of Agriculture, Abeokuta, October, 2011 (late dry season) to study drought recovery ability of 13 upland rice varieties exposed to soil moisture stress (20 days) at three growth stages (vegetative, reproductive and grain filling stage). The experiment was in completely randomized design, with three replicates. Under moisture stress significantly higher growth recovery, more erect canopy and flatter leaf surface were obtained in all the rice varieties at vegetative growth stage than other growth stages with increasing duration of re-watering. Under stress condition NERICA 4 maintained a significantly higher leaf area (27.50 cm2 and 40.18 cm2), plant height (53.45 cm and 67.62 cm) and number of tillers (1.67 and 1.67), but with a depressed number of leaf, slanted leaf posture and curved leaf especially during the later stage of its growth (Reproductive and grain filling stage respectively). It could be concluded that NERICA 4 had higher recovery ability than other rice varieties in drought prone upland ecology.


2009 ◽  
Vol 148 (2) ◽  
pp. 191-204 ◽  
Author(s):  
L. SHAO ◽  
X. ZHANG ◽  
A. HIDEKI ◽  
W. TSUJI ◽  
S. CHEN

SUMMARYField and pot experiments were conducted to investigate the effects of defoliation on crop performance and the possibility of using defoliation as a method for conserving soil moisture. The study was conducted during 2006–2008, over two growing seasons of winter wheat (Triticum aestivum L.) in the North China Plain. Three levels of defoliation (mild, moderate and severe) were imposed on winter wheat in the field during the following crop phases and conditions: at heading, at anthesis under water deficit conditions and at anthesis under two or three levels of irrigation. Additional pot experiments with three levels of defoliation under two water regimes were arranged. The results showed that both the intensity of defoliation and the timing of defoliation significantly reduced grain production. Under wet conditions the reduction was over 20%, while under dry conditions the reduction was c. 12%. Yield reduction was greater for defoliation at heading than at anthesis and it was mainly caused by a reduction in kernel weight. Mild defoliation (top three leaves retained) did not affect grain yield. Moderate defoliation (top two leaves retained) slightly reduced grain production. Root length density in the topsoil profile was significantly reduced by severe defoliation at anthesis under wet conditions, but it increased under dry conditions. Dry matter remobilization to grains under moderate and mild defoliation was increased and resulted in a relatively higher harvest index (HI). The photosynthetic rate of the leaves remaining after defoliation was enhanced under all soil moisture conditions. Although defoliation reduced the seasonal water use (ET), the yield reduction was much greater than the reduction in ET under severe defoliation, resulting in lower water use efficiency (WUE). The results show that conserving soil moisture by removing leaves might not be an economic choice. Under the conditions of the present study, the WUE of winter wheat was not improved by defoliation; however, in very dry conditions the reduction in ET by defoliation might help the crop survive.


2009 ◽  
Vol 6 (8) ◽  
pp. 1423-1444 ◽  
Author(s):  
T. Keenan ◽  
R. García ◽  
A. D. Friend ◽  
S. Zaehle ◽  
C. Gracia ◽  
...  

Abstract. Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE"), and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+"), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.


2011 ◽  
Vol 63 (6) ◽  
pp. 392-392 ◽  
Author(s):  
Anil Gunaratne ◽  
Upul Kumari Ratnayaka ◽  
Nihal Sirisena ◽  
Jennet Ratnayaka ◽  
Xiangli Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document