TOLERANCE OF CREEPING RED FESCUE AND TIMOTHY TO HERBICIDES USED TO CONTROL CANADA THISTLE

1976 ◽  
Vol 56 (2) ◽  
pp. 331-338 ◽  
Author(s):  
A. GALLAGHER ◽  
W. H. VANDEN BORN

Field experiments at seven locations in northern Alberta confirmed that picloram (4-amino-3,5,6-tricholoropicolinic acid) is a useful herbicide for the control of Canada thistle (Cirsium arvense (L.) Scop.) in seed crops of creeping red fescue (Festuca rubra L.) and timothy (Phleum pratense L.). Dicamba (3,6-dicholoro-o-anisic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were less effective. Preplant herbicide treatments were tolerated by both grass species provided that one growing season elapsed between treatment and planting of the grasses. Fertile tiller production was increased in plants selected from field plots treated 1 yr earlier with picloram and transferred to a growth chamber for flowering and seed production. Seed production of timothy was not affected by 0.14 – 0.84 kg/ha of picloram applied at several growth stages. Fescue seed production was not affected by picloram treatments up to 0.56 kg/ha, but was reduced by most other herbicide treatments applied at 10% anthesis. In no instance did herbicide treatment result in more than a 10% reduction in germination of seed from either grass species and, except in the case of a dicamba treatment on timothy, seedlings appeared to be normal in all respects.

2002 ◽  
Vol 82 (4) ◽  
pp. 709-719
Author(s):  
N. A. Fairey ◽  
L. P. Lefkovitch

A field study in the Peace River region of north-western Canada evaluated the effect of shallow rotary cultivation with vertical tines on the seed production of stands of creeping red fescue (Festuca rubra L. var. rubra). At four sites, rotary cultivation treatments (None, Low, Medium and High tine rotor speed) were applied after the harvest of the first and second seed crops, in factorial combination with the time of application of 68 kg ha-1 N fertilizer (Early fall, Late fall, and Split 1:1 early:late fall). In harvest years 2 and 3, the effect of site on seed yield per unit land area was modified by both N and rotary cultivation. In harvest year 2, seed yield at Site 1 was increased greatly by rotary cultivation, regardless of the tine rotor speed, but there was little difference among the four cultivation treatments at the other three sites. In harvest year 3, seed yield was increased with Low, Medium and High rotary cultivation to 6- to 11-fold that without rotary cultivation at Sites 1 and 2 but only to 1.4- to 2-fold at Sites 3 and 4. Seed yield response to rotary cultivation was dependent on site and year, a reflection of the physiological status of the fescue plants at each specific site. Rotary cultivation treatments may have been too detrimental to tiller growth and development for sustaining and enhancing seed yield, particularly at Sites 3 and 4 prior to harvest year 2. There was no consistent pattern of response in seed yield among the four sites to the three N treatments in either harvest year 2 or 3. Although there was a significant (P < 0.001) N × rotary cultivation interaction for seed yield in harvest year 3, the pattern among cultivation treatments was generally similar for each N treatment; compared to no cultivation, the three cultivation treatments more than doubled seed yield to 255–322 kg ha-1 with Early and Split N and increased it 4- to 6-fold to 203–288 kg ha-1 with Late N. There is some potential for rotary cultivation, but the selected treatments were generally too aggressive in suppressing tillers. Key words: Rejuvenation of creeping red fescue, mechanical rejuvenation, rotary cultivation, power-harrowing, grass seed production


Weed Science ◽  
1999 ◽  
Vol 47 (6) ◽  
pp. 687-692 ◽  
Author(s):  
James A. Mickelson ◽  
R. Gordon Harvey

Field experiments were conducted in 1997 and in 1998 to determine the effects of density and time of emergence onEriochloa villosagrowth and seed production inZea mays. E. villosawas transplanted at four densities (3, 9, 27, and 81 plants m−2) to simulate emergence at four Z.maysgrowth stages (VE, V2, V5, and V10). Compared toE. villosaplants that emerged withZ. maysplants, total above-groundE. villosabiomass at maturity of plants grown at 3 plants m−2was reduced by 54, 97, and 99% when emergence was delayed until the V2, V5, and V10 stages ofZ. mays, respectively, in 1997. In 1998, total abovegroundE. villosabiomass at maturity was reduced by 70, 87, and 99% when emergence was delayed until the V2, V5, and V10 stages ofZ. mays, respectively.E. villosaaboveground vegetative biomass per plant at maturity was linearly related to seed production per plant in each year.E. villosaseed production m−2decreased nonlinearly as density decreased and time of emergence was delayed. Based on estimated model parameters, maximum seed production was 57,100 and 12,700 seeds m−2in 1997 and 1998, respectively. Within time of emergence,E. villosadensity did not affect seed mass per seed, however, seed mass of late-emerging cohorts was less than that of early-emerging cohorts. Time of weed emergence relative to the crop was a very important factor in determining biomass and seed production. Results suggest that late-emerging plants may not be very important to long-term management ofE. villosa.


2010 ◽  
Vol 24 (3) ◽  
pp. 219-225 ◽  
Author(s):  
D. Shane Hennigh ◽  
Kassim Al-Khatib ◽  
Mitchell R. Tuinstra

Postemergence herbicides to control grass weeds in grain sorghum are limited. Acetolactate synthase (ALS) –inhibiting herbicides are very effective at controlling many grass species in many crops; unfortunately, use of ALS-inhibiting herbicides is not an option in conventional grain sorghum because of its susceptibility to these herbicides. With the development of ALS-resistant grain sorghum, several POST ALS-inhibiting herbicides can be used to control weeds in grain sorghum. Field experiments were conducted in 2007 and 2008 to evaluate the efficacy of tank mixtures of nicosulfuron + rimsulfuron applied alone or in combination with bromoxynil, carfentrazone–ethyl, halosulfuron + dicamba, prosulfuron, 2,4-D, or metsulfuron methyl + 2,4-D. In addition, these treatments were applied with and without atrazine. Nicosulfuron + rimsulfuron controlled barnyardgrass, green foxtail, and giant foxtail 99, 86, and 91% 6 wk after treatment (WAT), respectively. A decrease in annual grass control was observed when nicosulfuron + rimsulfuron was tank mixed with some broadleaf herbicides, although the differences were not always significant. In addition, nicosulfuron + rimsulfuron controlled velvetleaf and ivyleaf moringglory 64 and 78% 6 WAT, respectively. Control of velvetleaf was improved when nicosulfuron + rimsulfuron was tank mixed with all broadleaf herbicides included in this study with the exception of atrazine, bromoxynil, and prosulfuron + atrazine. Control of ivyleaf morningglory was improved when nicosulfuron + rimsulfuron was tank mixed with all of the herbicides included in this study with the exception of metsulfuron methyl + 2,4-D. Weed populations and biomass were lower when nicosulfuron + rimsulfuron were applied with various broadleaf herbicides than when it was applied alone. Grain sorghum yield was greater in all herbicide treatments than in the weedy check, with the highest grain yield from nicosulfuron + rimsulfuron + prosulfuron. This research showed that postemergence application of nicosulfuron + rimsulfuron effectively controls grass weeds, including barnyardgrass, green foxtail, and giant foxtail. The research also showed that velvetleaf and ivyleaf morningglory control was more effective when nicosulfuron + rimsulfuron were applied with other broadleaf herbicides.


1985 ◽  
Vol 2 ◽  
pp. 15-22
Author(s):  
M.P. Ralston ◽  
K.R. Brown ◽  
M.D. Hare ◽  
K.A. Young

Four weed species (Bromus mollis, Vulpia sp., Poa annua, Steltaria media) occur in 30% or more of all perennial ryegrass seed samples. Of the listed undesirable species, Avena fatua (wild oat) and Hordeum murinum occurred respectively in 5.3 and 3.5% of ryegrass seedlots. Only 6 herbicides are registered for use in grass seed crops in New Zealand, 2 for wild oat, and 4 for broadleaved weeds. The results of research on weed control in seedling and established seed crops (ryegrass, cocksfoot, tall fescue, phalaris, prairie grass) are presented. Fertilisers for grass seed crops discussed are nitrogen (N), phosphorus (P), potassium (K), lime and zinc. Autumn N is commonly used and will increase seed yields in early flowering species (Pestuca rubra, F. arundinacea), but in ryegrass variable results have occurred. Spring N should be applied at stem elongation. No responses to P have been reported for ryegrass, while in established cocksfoot responses to P and K have been reported. Overliming can induce Zn deficiencies, and of the grass species only prairie grass may require lime. Keywords: Lolium, ryegrass, seed production, weed occurrence, Bromus mollis, herbicides, fertilisers, nitrogen, phosphorus, potassium, lime, zinc


2014 ◽  
Vol 66 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Danuta Martyniak ◽  
Grzegorz Żurek

Abstract A wide range of seed material from different grass species is necessary to keep high quality grasslands and to create buffer zones between arable lands and forest and to re-cultivate waste or fallow land. Therefore, the aim of our research was to describe elements of seed propagation of some minor grass species. On the basis of field experiments, different spacing and seed quantities were investigated for Beckmannia eruciformis, Cynosurus cristatus and Elytrigia elongata aiming at an optimal seed production. Satisfying seed yields were obtained even at a reduced (50% to 75%) amount of seed quantity, as compared to theoretical (or normal) values, calculated on the basis of number of plants per area unit.


1992 ◽  
Vol 6 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Jerry A. Baysinger ◽  
Barry D. Sims

Two field experiments were established in 1988 and 1989 in southeast Missouri to evaluate several herbicides and herbicide combinations for giant ragweed control in soybean. In 1988, a timely rainfall was not received for soil-applied herbicides and giant ragweed control was less than 75%. However, in 1989 soil moisture was sufficient for uptake of soil-applied herbicides and early season giant ragweed control was generally greater than 80%. Chlorimuron, chlorimuron plus 2,4-DB, imazaquin plus 2,4-DB, acifluorfen followed by naptalam plus 2,4-DB, fomesafen, and imazethapyr applied to 2.5 to 5-cm giant ragweed controlled more than 85% in 1988. In 1989, all POST treatments except imazaquin controlled more than 81% of giant ragweed 2 wk after treatments. Imazethapyr controlled seedling giant ragweed at heights up to 12 to 25 cm. Giant ragweed regrowth and/or reinfestation and giant ragweed seed production occurred with all herbicide treatments.


1987 ◽  
Vol 67 (3) ◽  
pp. 755-763 ◽  
Author(s):  
A. L. DARWENT ◽  
H. G. NAJDA ◽  
J. C. DRABBLE ◽  
C. R. ELLIOTT

The effect of row spacing on seed and hay yields of 11 perennial grass species, including crested wheatgrass (Agropyron cristatum L.), intermediate wheatgrass (A. intermedium (Host.) Beauv.), a northern biotype of bromegrass (Bromus inermis Leyss.), a southern biotype of bromegrass, Russian wildrye (Elymus junceus Fisch.), meadow fescue (Festuca pratensis Hudson), creeping red fescue (F. rubra var. genuina L.), chewings fescue (F. rubra var. commutata Gaud), reed canary grass (Phalaris arundinacea L.), a turf-type timothy (Phleum bertolonii DC (P. bulbosum auct.)) and hexaploid timothy (Phleum pratense L.), was studied under a system with limited inputs of fertilizer and no weed control. The width of the row spacings ranged from 16 to 104 cm where seed yields were measured and from 27 to 93 cm where hay yields were measured. The seed yield of all grasses was greater at a row spacing of 16 cm than at row spacings of 60 cm or more. Hay yields of all grasses, averaged over four production years, were also greatest at narrow row spacings (27 cm). These yields decreased as row spacings increased to 49 through 93 cm. Row spacing had its greatest effect on hay yields during the first production year. After this period the effects of row spacing on hay yields were small.Key words: Row spacing, perennial grasses, seed yields, hay yields


1989 ◽  
Vol 3 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Bill D. Brewster ◽  
Robert L. Spinney

Field experiments were conducted in 1982 through 1986 to evaluate the effect of six postemergence grass herbicides, clethodim, the methyl ester of diclofop, the butyl ester of fluazifop-P, the methyl ester of haloxyfop, the methyl ester of quizalofop, and sethoxydim, on 31 seedling grass species. All herbicides except diclofop controlled most of the species tested. None of the herbicides controlled rattail fescue or red fescue. Only clethodim and haloxyfop controlled annual bluegrass.


2004 ◽  
Vol 18 (2) ◽  
pp. 426-431 ◽  
Author(s):  
James A. Mickelson ◽  
Alvin J. Bussan ◽  
Edward S. Davis ◽  
Andrew G. Hulting ◽  
William E. Dyer

Uncontrolled kochia plants that regrow after small-grain harvest can produce substantial numbers of seeds. An average of 4,100 seeds per plant were produced between harvest (late July to mid August) and the first killing frost (late September) at three locations in Montana. Field experiments were conducted to determine the optimal timing of postharvest herbicide applications to prevent kochia from producing viable seeds. Herbicide treatments were applied at three timings from late August to mid September. The most effective treatments were glyphosate (631 g/ha) and paraquat (701 g/ha) applied at the second application timing (late August to early September). These treatments reduced kochia seed production by 92% or greater at each site. Kochia regrowth by this time had sufficient leaf area for herbicide absorption, but few viable seed had been produced. Herbicide treatments at the first and third application timings were generally less effective and more variable in reducing kochia seed production. Sulfentrazone (157 g/ha) and 2,4-D (561 g/ha) were not as effective at reducing seed production as other herbicide treatments.


1986 ◽  
Vol 66 (3) ◽  
pp. 601-608 ◽  
Author(s):  
B. E. GUDLEIFSSON ◽  
C. J. ANDREWS ◽  
H. BJORNSSON

A number of forage grass species were tested for cold hardiness and ice tolerance after growth and cold hardening under controlled conditions. Tests exposing cold-hardened plants to a single level of stress separated species into statistically similar groups but, in a number of cases, the stress was not sufficient to kill plants so the true cultivar rankings were obscured. Derivation of the 50% kill point from a wide range of levels of stress served to identify cold hardiness and ice tolerance levels of cultivars of 10 species. Ranked according to the most hardy cultivar of the species tested were: timothy (Phleum pratense L.), Kentucky bluegrass (Poa pratensis L.), meadow foxtail (Alopecurus pratensis L.), red fescue (Festuca rubra L.), meadow fescue (Festuca pratensis L.), tufted hairgrass (Deschampsia caespitosa L.), creeping foxtail (Alopecurus arundinaceus L.), berings hairgrass (Deschampsia beringensis L.), orchardgrass (Dactylis glomerata L.), reed canarygrass (Phalaris arundinaceae). LT50 values varied from −15.7 °C for timothy to −4.7 °C for reed canarygrass. Cold hardiness and ice tolerance were only loosely associated (r = 0.36). The most ice-tolerant species were berings and tufted hairgrasses and timothy with LI50 values of 50, 39 and 44 d, respectively.Key words: Acclimation, encasement, freezing, resistance


Sign in / Sign up

Export Citation Format

Share Document