EFFECTS OF GREEN FOXTAIL AND LAMB’S-QUARTERS INTERFERENCE IN FIELD CORN

1980 ◽  
Vol 60 (4) ◽  
pp. 1419-1425 ◽  
Author(s):  
K. P. SIBUGA ◽  
J. D. BANDEEN

Field experiments were conducted to study the effects of full season interference of various densities of green foxtail (Setaria viridis (L) Beauv.) and lamb’s-quarters (Chenopodium album L.) on the yield of field corn. Green foxtail interference was studied at densities of 0, 29, 56, 89 and 129 plants/m2 in 1976 and 0, 20, 40, 62, 84 and 119 plants/m2 in 1977. Non-significant (P = 0.05) corn yield reductions were obtained at densities of 56 and 20 plants/m2 in 1976 and 1977, respectively. Increased green foxtail density reduced corn yields by 5.8–17.6% in 1976 and 5.6–16% in 1977. Lamb’s-quarters interference was tested at densities of 0, 46, 83, 112, 167 and 221 plants/m2 in 1976 and 0, 54, 109, 172, 208 and 277 plants/m2 in 1977. Corn yields were not reduced significantly at lamb’s-quarters densities of 46 and 109 plants/m2 in 1976 and 1977, respectively, compared to weed-free treatments. Yield reductions\ranged from 12.3–37.9% in 1976 and 6–58% in 1977. The competitive effects of green foxtail and lamb’s-quarters on corn yield differed mainly on the ability of the latter to reduce ear and seed size.

2002 ◽  
Vol 82 (4) ◽  
pp. 789-796 ◽  
Author(s):  
N. H. Furness ◽  
M. K. Upadhyaya

Differential morphological sensitivity of weed species to ultraviolet-B (UV-B) radiation (290–320 nm) may alter competitive relationships among weeds and associated crop species as the level of this radiation changes. In order to determine relative sensitivity of common chickweed [Stellaria media (L.) Vill.], green foxtail (Setaria viridis L.), lady's-thumb (Polygonum persicaria L.), lamb's-quarters (Chenopodium album L.), redroot pigweed (Amaranthus retroflexus L.), and shepherd's-purse (Capsella bursa-pastoris L.) to this radiation, seedlings were grown under 0, 7, and 11 kJ m-2 d-1 of biologically effective UV-B radiation in a greenhouse for 6 wk. The influence of UV-B radiation on seedling growth and morphology was investigated. UV-B radiation reduced shoot height in green foxtail (by up to 41%), lamb's-quarters, and redroot pigweed, and increased tillering in green foxtail seedlings. Leaf area and leaf biomass in common chickweed, green foxtail, lamb's-quarters, and shepherd's-purse, and stalk biomass in common chickweed, green foxtail, lamb's-quarters, redroot pigweed and shepherd's-purse declined in response to UV-B radiation. In common chickweed, leaf area was reduced by 74% at 11 kJ m-2 d-1. Root biomass was reduced by UV-B radiation in all species (up to 68% at 11 kJ m-2 d-1 in common chickweed) except lady's-thumb. Specific leaf weight increased and leaf area ratio declined in response to UV-B radiation in common chickweed and shepherd's-purse. Exposure to UV-B radiation increased the leaf weight ratio in common chickweed. Shoot:root ratios increased in response to UV-B radiation in common chickweed and redroot pigweed. Scanning electron microscopy revealed collapsed epidermal cells in occasional necrotic regions on adaxial leaf surfaces of redroot pigweed grown under 11 kJ m-2 d-1 UV-B radiation. Morphology and growth of lady's-thumb were not affected by UV-B radiation. This study suggests that common agricultural weeds have differential morphological and growth responses to UV-B-enhanced environments. Sensitivity to UV-B radiation was greatest for common chickweed and least for lady's-thumb and redroot pigweed. Key words: ultraviolet-B, Amaranthus retroflexus, Capsella bursa-pastoris, Chenopodium album, Polygonum persicaria, Setaria viridis, Stellaria media


1991 ◽  
Vol 71 (3) ◽  
pp. 831-839 ◽  
Author(s):  
A. G. Thomas

Annual surveys for weeds of fields seeded to spring wheat, barley, oats, flax, and canola in Manitoba were conducted during 1978, 1979, and 1981. Fields were surveyed during July and early August each year using a stratified random sampling procedure. Data for the crops and years were combined for analysis. The frequency, the area infested, and the density of the infestation were determined for each species. These three measures of the abundance of the weed were combined into a single synthetic value called relative abundance. Nine of the 152 species recorded by the surveyors accounted for 77% of the total relative abundance. Ranked in order by relative abundance, these species were green foxtail (Setaria viridis (L.) Beauv.), wild oats (Avena fatua L.), wild buckwheat (Polygonum convolvulus L.), annual smartweed (Polygonum spp.), Canada thistle (Cirsium arvense (L.) Scop.), lamb's-quarters (Chenopodium album L.), wild mustard (Sinapis arvensis L.), perennial sow-thistle (Sonchus arvensis L.), and redroot pigweed (Amaranthus retroflexus L.). Green foxtail was the predominant weed with an abundance value three times larger than wild oats or wild buckwheat. The pattern of dominance found in Manitoba fields was similar to results from comparable surveys in Saskatchewan and North Dakota. Key words: Relative abundance, weed survey, weed density, green foxtail, wild oats, wild buckwheat


1990 ◽  
Vol 70 (4) ◽  
pp. 1215-1221 ◽  
Author(s):  
IRIS BITTERLICH ◽  
MAHESH K. UPADHYAYA

Field experiments were conducted in 1987 and 1988 to study the effect of lamb’s-quarters (Chenopodium album L.) interference on broccoli (Brassica oleracea L. var. botrytis ’Emperor’) growth and yield. Broccoli growth was initially affected by weed interference at 28–36 d after seeding. Generally, the negative effect of weed interference on broccoli growth increased with increasing weed density and time after seeding. Interference by 15 lamb’s-quarters plants m−2 reduced the biomass of broccoli plants by 71–73% compared to the weed-free control at 57–58 d after seeding. Weed density-crop yield relationship curves showed that one lamb’s-quarters plant m−2 decreased total yield by 18–20% and marketable yield by 22–37%. Lamb’s-quarters reduced the total yield per plot by decreasing the average head weight of broccoli. The number of heads per plot was not affected. Weed interference also reduced the weight of heads classified as marketable (> 10 cm across). However, in 1987 more heads failed to reach a marketable size which resulted in a much smaller marketable yield than in 1988.Key words: Brassica oleracea var. botrytis, broccoli, Chenopodium album L., weed density, weed interference, cole crop


2007 ◽  
Vol 52 (2) ◽  
pp. 95-104 ◽  
Author(s):  
Stevan Knezevic ◽  
Santiago Ulloa

Field experiments were conducted during summer 2007 to determine a baseline information on crop and weed tolerance to broadcast flaming utilizing different rates of propane. The species evaluated were: maize (Zea mays), sorghum (Sorghum halepense), soybean (Glycine max), sunflower (Helianthus annuus), barnyardgrass (Echinocloa crus-galli), green foxtail (Setaria viridis), velvetleaf (Abutilon theophrasti) and redroot pigweed (Amaranthus retroflexus). The propane rates applied were 0, 12.1, 30.9, 49.7, 68.5 and 87.22 kg/ha. The response of the plants to propane rates were described by log-logistic models. Plant response to flame varied depending on the species, growth stage and propane rate. Broadleaf weeds were more susceptible to flames than grasses. Field maize and sorghum were less susceptible, while soybean and sunflower were severely injured. Of all crops tested, broadcast flaming has the most potential for use in field maize.


Weed Science ◽  
1985 ◽  
Vol 33 (4) ◽  
pp. 447-451 ◽  
Author(s):  
Susan E. Weaver ◽  
Allan S. Hamill

Effects of soil pH on growth, competitive ability, and leaf nutrient content of corn (Zea maysL.), Powell amaranth (Amaranthus powelliiS. Wats. ♯ AMAPO), velvetleaf (Abutilon theophrastiMedic. ♯ ABUTH), and green foxtail [Setaria viridis(L.) Beauv. ♯ SETVI] were measured in the field. Corn yields were significantly reduced by weed competition at all pH levels, but leaf nutrient content, as a percentage of dry weight, was not affected. Aboveground dry weights of Powell amaranth and velvetleaf were significantly lower at pH 4.8 than at pH 6.0 or 7.3, whereas growth of green foxtail was greater at pH 4.8 than at pH 7.3. Weed competitive ability, as evidenced by reductions in dry weight, varied with soil pH and companion plant. Powell amaranth and velvetleaf had higher levels of S, Zn, and especially Mn, at pH 4.8 than at pH 7.3. N and K in the leaf tissue were greater in the weed species than in corn at all soil pH levels. The dicot species had higher percentages of Ca and Mg in leaf tissue at all soil pH levels and accumulated higher percentages of Mn at low pH than the monocot species.


2016 ◽  
Vol 96 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Zhenyi Li ◽  
Rene Van Acker ◽  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

Six field experiments were conducted over a two-year period (2013 and 2014) to evaluate the tolerance of white bean and spectrum of weeds controlled with halosulfuron applied preplant incorporated (PPI) alone or tankmixed with trifluralin, pendimethalin, EPTC, dimethenamid-P, or S-metolachlor. Halosulfuron applied alone or in tankmix with trifluralin, pendimethalin, EPTC, dimethenamid-P, or S-metolachlor caused 2% or less visible injury 1 and 4 weeks after emergence (WAE). Halosulfuron applied PPI controlled common lamb's-quarters, wild mustard, redroot pigweed, and common ragweed greater than 90% and green foxtail less than 60% 4 and 8 WAE. Weed biomass and density followed a similar pattern. White bean yield with halosulfuron applied alone or in tankmix with the same herbicides was equivalent to the weed-free control.


1999 ◽  
Vol 13 (2) ◽  
pp. 367-373 ◽  
Author(s):  
Enrique Rosales-Robles ◽  
James M. Chandler ◽  
Scott A. Senseman ◽  
Eric P. Prostko

Johnsongrass, a tall, coarse, perennial grass, is the second most common and troublesome weed in field corn in Texas. Field experiments were conducted in 1996 to 1998 to evaluate an integrated johnsongrass management program in bedded and irrigated field corn. Nicosulfuron at 26.3 g ai/ha applied banded over the row to 50% of the planted area plus one cultivation resulted in johnsongrass control of aboveground and rhizome biomass and in corn yield comparable to the labeled rate (35 g ai/ha) when applied two consecutive years in the same plots. This treatment reduced cost 27% and reduced herbicide input 62% compared to nicosulfuron applied broadcast at labeled rate without cultivation. Economic benefits of this johnsongrass management program are promising for field corn producers.


1992 ◽  
Vol 6 (2) ◽  
pp. 291-296 ◽  
Author(s):  
Dallas E. Peterson ◽  
John D. Nalewaja

Yield reductions due to green foxtail competition with hard red spring wheat varied with environment in field experiments conducted in 1984, 1985, and 1986 at Oakes, Langdon, Prosper, and Fargo, North Dakota. Wheat yield reductions ranged from 0 to 47% from 720 green foxtail plants per m2. Inclusion of early season temperature and precipitation, soil texture, and foxtail density into multiple regression analysis of wheat yield reductions significantly increased the coefficient of determination to 0.62 compared with 0.12 for regression based on green foxtail density alone. Wheat yield reduction decreased as green foxtail seeding was delayed after wheat seeding in 1986. Wheat yield generally decreased as time of diclofop application was delayed from 2 to 6 wk after wheat emergence in 1986.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 774-780 ◽  
Author(s):  
Carol J. Bubar ◽  
Ian N. Morrison

The growth of green foxtail (Setaria viridisL. Beauv. ♯3SETVI) and yellow foxtail [S. lutescens(Weigel.) Hubb. ♯ SETLU] in full sunlight, under 55 and 73% shade and within a wheat (Triticum aestivumL. ‘Neepawa’) stand, was compared in field experiments conducted over 3 yr. Shade resulted in a proportionately greater reduction in tiller number of yellow foxtail than of green foxtail. Plants growing in full sunlight produced up to five times more tillers than those growing in the crop. Averaged over the 3 yr, the two shade treatments reduced dry-matter accumulation of both species by 40% or more. The dry weight of plants within the crop was only about one-eighth of that of plants grown in full sunlight. Under both shade treatments and in the crop, yellow foxtail was consistently taller than green foxtail. Nevertheless, no differences in dry weight occurred between species under either shade treatment or in the crop. The results indicate that neither of the two species is distinctly more shade tolerant than the other, nor better adapted to compete with wheat.


1993 ◽  
Vol 7 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Hugh J. Beckie ◽  
Ian N. Morrison

The response of susceptible (S) and resistant (R) green foxtail biotypes to increasing dosages of trifluralin, applied PPI in rapeseed and preemergence incorporated (PEI) in wheat, was investigated in field experiments in 1989 and 1990. Differences in response between the biotypes to PPI- and PEI-trifluralin were 7- and 12-fold, respectively, based on density and shoot biomass determinations 4 wk after emergence. Nine- and 14-times higher dosages of PPI- and PEI-trifluralin, respectively, were required to reduce R-seed production by 50% than to reduce S-seed production by the same amount. At the recommended trifluralin dosage in rapeseed (1.4 kg ha−1), the density of S-plants 4 wk after emergence was reduced by 84% compared with untreated plots, whereas the density of R-plants was reduced by only 4%. The effective kill (seed yield reduction) was 99% and 42%, respectively. At the recommended dosage in wheat (0.9 kg ha−1), the density of S-plants 4 wk after emergence was reduced by over 99% compared with less than 36% for R-plants. The effective kill was 97% and 14%, respectively. Based on determination of effective kill, the selection pressure of trifluralin on green foxtail is greater when the chemical is applied PPI in rapeseed than when applied PEI in wheat, even though initial density reductions are less in the former than the latter.


Sign in / Sign up

Export Citation Format

Share Document