POSTSTORAGE EFFECT OF LIGHT, TEMPERATURE AND NUTRIENT SPRAY TREATMENTS ON CHLOROPHYLL DEVELOPMENT IN CABBAGE

1982 ◽  
Vol 62 (4) ◽  
pp. 1023-1026 ◽  
Author(s):  
PETER W. PERRIN

After 4 mo of storage, two trimmed cabbage cultivars received temperature, light and nutrient spray treatments. Analyses showed that the combined effect of elevated temperature and illumination increased chlorophyll substantially while nutrient sprays produced a smaller effect. Although the cultivars differed in initial chlorophyll content, they responded similarly to the treatments.

1932 ◽  
Vol 16 (2) ◽  
pp. 349-355 ◽  
Author(s):  
John H. Welsh

1. The speed of progression of Unionicola, a water mite, is influenced by light; and over a certain range increases as a function of the light intensity. 2. The relation between speed and light intensity is not a simple one, as the speed of progression is due to the combined effect of amplitude of steps and frequency of leg movement. 3. The amplitude of stride increases in direct proportion to the logarithm of the light intensity, while the frequency of stepping has no such simple relation to intensity. 4. The change in length of stride with changing light intensity indicates a tonic effect of light on the locomotor muscles. Such an effect has been observed previously in studies of orientation, due to unequal illumination, which produces changes in posture.


Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 38 ◽  
Author(s):  
Marcella Mesquita ◽  
Miquel Lürling ◽  
Fabiane Dorr ◽  
Ernani Pinto ◽  
Marcelo Marinho

Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium that can tolerate a wide range of light and temperature. Due to climatic changes, the interaction between light and temperature is studied in aquatic systems, but no study has addressed the effect of both variables on the saxitoxins production. This study evaluated the combined effect of light and temperature on saxitoxins production and cellular quota in C. raciborskii. Experiments were performed with three C. raciborskii strains in batch cultures under six light intensities (10, 40, 60, 100, 150, and 500 μmol of photons m−2 s−1) and four temperatures (15, 20, 25, and 30 °C). The growth of C. raciborskii strains was limited at lower temperatures and the maximum growth rates were obtained under higher light combined with temperatures equal or above 20 °C, depending on the strain. In general, growth was highest at 30 °C at the lower light intensities and equally high at 25 °C and 30 °C under higher light. Highest saxitoxins concentration and cell-quota occurred at 25 °C under high light intensities, but were much lower at 30 °C. Hence, increased temperatures combined with sufficient light will lead to higher C. raciborskii biomass, but blooms could become less toxic in tropical regions.


Weed Science ◽  
1978 ◽  
Vol 26 (5) ◽  
pp. 432-433 ◽  
Author(s):  
R. M. Devlin ◽  
C. N. Saras ◽  
M. J. Kisiel ◽  
A. S. Kostusiak

Chlorophyll content of wheat (Triticum aestivum L. ‘Mericopa’) and corn (Zea mays L. ‘Merit’) treated with the herbicide fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone} and grown under high light intensity (10.8 klux), was markedly reduced. Corn and wheat germinated from seeds treated with 10 uM fluridone and grown for 6 days were almost completely bleached. Under low light intensity (108 lux) the influence of fluridone on chlorophyll production was greatly reduced. Under very low light intensity (21.5 lux) this influence was almost completely lost. The effect of light on the activity of fluridone suggests that the inhibition of carotenoid production may represent the mode of action of this herbicide. This study shows that the carotenoid content of wheat or corn drops dramatically when these plants are treated with fluridone.


2017 ◽  
Vol 26 (6) ◽  
pp. 067801 ◽  
Author(s):  
Yang Gao ◽  
Hai-Feng Dong ◽  
Xiang Wang ◽  
Xiao-Fei Wang ◽  
Ling-Xiao Yin

RSC Advances ◽  
2016 ◽  
Vol 6 (27) ◽  
pp. 22896-22907 ◽  
Author(s):  
Ana L. Gonçalves ◽  
José C. M. Pires ◽  
Manuel Simões

A mathematical model describing the combined effect of light and temperature on microalgal growth was developed.


2021 ◽  
pp. 118250
Author(s):  
Joorim Na ◽  
Yongeun Kim ◽  
Jinyoung Song ◽  
Taeyong Shim ◽  
Kijong Cho ◽  
...  

Author(s):  
G. Sathiyanarayanan ◽  
S. Maamallan ◽  
M. Prakash ◽  
S. Rameshkumar

Background: Cowpea (Vigna unguiculata) is one of the most important legume crops cultivated throughout the world. Cowpea is used as food, feed, forage, fodder, green manuring and vegetable. It’s seed is a nutritious component in the human diet, as well as for livestock. Seed hardening and pelleting are seed enhancement techniques used to improve seed germination and seedling vigour and growth by altering the physiological state of the seed. This alteration may improve the vigor or the physiology of the seed by enhancing uniformity of germination. Seed enhancement techniques like hardening and priming include use of chemicals that trigger systemic acquired resistance or improve stress tolerance whereas the pelleting treatments improve seed handling and planting. They also enhance nutrient availability or provide inoculates by delivering materials needed during sowing, germination and seedling establishment. Hence in order to study the combined effect of seed hardening and pelleting on growth, yield and resultant seed quality of cowpea under natural saline conditions, the present study was taken up. Methods: The present field and laboratory investigations were carried out to study the effect of seed hardening, seed pelleting and their combined effect on growth, physiology, yield and resultant seed quality of cowpea under natural saline conditions. The fresh seeds of cowpea seeds cv. CO (CP) 7 were hardened with KCl @ 1%, CaCl2 @ 1% and both KCl and CaCl2 @ 1% and then the hardened seeds were further pelleted with pungam leaf powder @ 100, 150 and 200 g kg-1 of seed. Then the treated seeds were evaluated for their seed productivity and resultant seed qualities using untreated seeds as control. Observations on growth, leaf chlorophyll content, gas exchange parameters, yield and resultant seed quality parameters were recorded. Result: The experimental results revealed that among the treatments, seeds hardened with KCl @ 1 % + CaCl2 @ 1 % and pelleted with pungam leaf powder @ 200 g per kg recorded higher growth, yield parameters, leaf chlorophyll content, gas exchange parameters and resultant seed quality when compared to control and other treatments.


Sign in / Sign up

Export Citation Format

Share Document