cell quota
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

Harmful Algae ◽  
2022 ◽  
Vol 112 ◽  
pp. 102173
Author(s):  
Nikola Medić ◽  
Elisabeth Varga ◽  
Dedmer B. Van de Waal ◽  
Thomas Ostenfeld Larsen ◽  
Per Juel Hansen
Keyword(s):  

Author(s):  
A.I. Abakumov ◽  
S.Ya. Pak

Droop's well-known model simulates phytoplankton biomass dynamics based on nutrient limitation. The defining parameter is the nutrient concentration in phytoplankton cells (cell quota). This model is modified to description of the photosynthesis processes. The effects of photosynthetically active radiation must be taken into account. At the same time, the nutritional factor remains the main one. Water temperature is considered as a controlling factor. The influence of light during photosynthesis plays a decisive role. The decisive factor is the presence of photosynthetic substances. We conventionally combine them under the name "chlorophyll". Sufficient variability in the proportion of chlorophyll in phytoplankton (chlorophyll quota) directly affects biomass production. The equation for the dynamics of chlorophyll quota is added to the Droop model. The parameters of the model depend on the concentration of nutrients, illumination and water temperature. The properties of the solutions in the model are investigated, the conditions for the existence and stability of equilibrium solutions are clarified. Complex dynamic regimes are revealed in the case of unstable equilibria. It was found that the most sensitive parameter for biomass dynamics is the minimum value of the cell quota. The dynamics of indicators for the daily cycle and the annual cycle of seasonal changes are calculated. The influence of nutrition, illumination and temperature on biomass production has been clarified. During the day, the chlorophyll quota fluctuates insignificantly due to a short period of time. The changes are noticeable at longer times for example during the season.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2192
Author(s):  
Abraham Guzmán-Palomino ◽  
Luciano Aguilera-Vázquez ◽  
Héctor Hernández-Escoto ◽  
Pedro Martin García-Vite

Microalgae-based biomass has been extensively studied because of its potential to produce several important biochemicals, such as lipids, proteins, carbohydrates, and pigments, for the manufacturing of value-added products, such as vitamins, bioactive compounds, and antioxidants, as well as for its applications in carbon dioxide sequestration, amongst others. There is also increasing interest in microalgae as renewable feedstock for biofuel production, inspiring a new focus on future biorefineries. This paper is dedicated to an in-depth analysis of the equilibria, stability, and sensitivity of a microalgal growth model developed by Droop (1974) for nutrient-limited batch cultivation. Two equilibrium points were found: the long-term biomass production equilibrium was found to be stable, whereas the equilibrium in the absence of biomass was found to be unstable. Simulations of estimated parameters and initial conditions using literature data were performed to relate the found results to a physical context. In conclusion, an examination of the found equilibria showed that the system does not have isolated fixed points but rather has an infinite number of equilibria, depending on the values of the minimal cell quota and initial conditions of the state variables of the model. The numerical solutions of the sensitivity functions indicate that the model outputs were more sensitive, in particular, to variations in the parameters of the half saturation constant and minimal cell quota than to variations in the maximum inorganic nutrient absorption rate and maximum growth rate.


2021 ◽  
Vol 9 (1) ◽  
pp. 134
Author(s):  
Urban Tillmann ◽  
Stephan Wietkamp ◽  
Haifeng Gu ◽  
Bernd Krock ◽  
Rafael Salas ◽  
...  

Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell−1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.


Toxins ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 92 ◽  
Author(s):  
Jose L. Perez ◽  
Tinchun Chu

Cyanobacteria harmful algal blooms (CHABs) are primarily caused by man-made eutrophication and increasing climate-change conditions. The presence of heavy metal runoff in affected water systems may result in CHABs alteration to their ecological interactions. Certain CHABs produce by-products, such as microcystin (MC) cyanotoxins, that have detrimentally affected humans through contact via recreation activities within implicated water bodies, directly drinking contaminated water, ingesting biomagnified cyanotoxins in seafood, and/or contact through miscellaneous water treatment. Metallothionein (MT) is a small, metal-sequestration cysteine rich protein often upregulated within the stress response mechanism. This study focused on zinc metal resistance and stress response in a toxigenic cyanobacterium, Microcystis aeruginosa UTEX LB 2385, by monitoring cells with (0, 0.1, 0.25, and 0.5 mg/L) ZnCl2 treatment. Flow cytometry and phase contrast microscopy were used to evaluate physiological responses in cultures. Molecular assays and an immunosorbent assay were used to characterize the expression of MT and MC under zinc stress. The results showed that the half maximal inhibitory concentration (IC50) was 0.25 mg/L ZnCl2. Flow cytometry and phase contrast microscopy showed morphological changes occurred in cultures exposed to 0.25 and 0.5 mg/L ZnCl2. Quantitative PCR (qPCR) analysis of selected cDNA samples showed significant upregulation of Mmt through all time points, significant upregulation of mcyC at a later time point. ELISA MC-LR analysis showed extracellular MC-LR (µg/L) and intracellular MC-LR (µg/cell) quota measurements persisted through 15 days, although 0.25 mg/L ZnCl2 treatment produced half the normal cell biomass and 0.5 mg/L treatment largely inhibited growth. The 0.25 and 0.5 mg/L ZnCl2 treated cells demonstrated a ~40% and 33% increase of extracellular MC-LR(µg/L) equivalents, respectively, as early as Day 5 compared to control cells. The 0.5 mg/L ZnCl2 treated cells showed higher total MC-LR (µg/cell) quota yield by Day 8 than both 0 mg/L ZnCl2 control cells and 0.1 mg/L ZnCl2 treated cells, indicating release of MCs upon cell lysis. This study showed this Microcystis aeruginosa strain is able to survive in 0.25 mg/L ZnCl2 concentration. Certain morphological zinc stress responses and the upregulation of mt and mcy genes, as well as periodical increased extracellular MC-LR concentration with ZnCl2 treatment were observed.


2019 ◽  
Vol 7 (6) ◽  
pp. 164 ◽  
Author(s):  
Maria Blažina ◽  
Ines Haberle ◽  
Enis Hrustić ◽  
Andrea Budiša ◽  
Ines Petrić ◽  
...  

The aim of the study was to explore the possibility of bioremediation of oil refinery wastewaters by the cyanobacterium Synechococcus sp. MK568070, isolated from the Adriatic Sea. The potential of biomass and lipid production was explored upon cultivation on oil refinery wastewater with excess CO2 after the removal of nutrients. The strain grew well in a wide range of salinities and ammonium concentrations, and was further tested on the wastewater from local oil refinery plant of various N-composition. Growth experiment under optimized conditions was used to analyze the lipid, carbohydrate and protein dynamics. The biomass yield was highly dependent on nutrient source and concentration, salinity and CO2 addition. Highest biomass yield was 767 mg/L of dry weight. Towards the end of the experiment the decline in carbohydrate to 18.9% is visible, whereas at the same point lipids, in particular saturated fatty acid methyl esters (FAME), started to accumulate within the cells. The content of lipids at the end of the experiment was 21.4%, with the unsaturation index 0.45 providing good biofuel feedstock characteristics. Fourier Transform Infrared (FTIR) spectroscopy analysis demonstrated a high degree of lipid accumulation in respect to proteins, along with the structural changes and biomass accumulation. In addition, the N-removal from the wastewater was >99% efficient. The potential of lipid accumulation, due to the functional photosynthesis even at the minimal cell quota of nutrients, is critical for the usage of excess industrial CO2 and its industrial transformation to biodiesel. These findings enable further considerations of Synechococcus sp. (MK568070) for the industrial scale biomass production and wastewater remediation.


Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 38 ◽  
Author(s):  
Marcella Mesquita ◽  
Miquel Lürling ◽  
Fabiane Dorr ◽  
Ernani Pinto ◽  
Marcelo Marinho

Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium that can tolerate a wide range of light and temperature. Due to climatic changes, the interaction between light and temperature is studied in aquatic systems, but no study has addressed the effect of both variables on the saxitoxins production. This study evaluated the combined effect of light and temperature on saxitoxins production and cellular quota in C. raciborskii. Experiments were performed with three C. raciborskii strains in batch cultures under six light intensities (10, 40, 60, 100, 150, and 500 μmol of photons m−2 s−1) and four temperatures (15, 20, 25, and 30 °C). The growth of C. raciborskii strains was limited at lower temperatures and the maximum growth rates were obtained under higher light combined with temperatures equal or above 20 °C, depending on the strain. In general, growth was highest at 30 °C at the lower light intensities and equally high at 25 °C and 30 °C under higher light. Highest saxitoxins concentration and cell-quota occurred at 25 °C under high light intensities, but were much lower at 30 °C. Hence, increased temperatures combined with sufficient light will lead to higher C. raciborskii biomass, but blooms could become less toxic in tropical regions.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 490 ◽  
Author(s):  
Alex Alcántara-Rubira ◽  
Víctor Bárcena-Martínez ◽  
Maribel Reyes-Paulino ◽  
Katherine Medina-Acaro ◽  
Lilibeth Valiente-Terrones ◽  
...  

Causative species of Harmful Algal Bloom (HAB) and toxins in commercially exploited molluscan shellfish species are monitored weekly from four classified shellfish production areas in Perú (three in the north and one in the south). Okadaic acid (OA) and pectenotoxins (PTXs) were detected in hand-picked cells of Dinophysis (D. acuminata-complex and D. caudata) and in scallops (Argopecten purpuratus), the most important commercial bivalve species in Perú. LC-MS analyses revealed two different toxin profiles associated with species of the D. acuminata-complex: (a) one with OA (0.3–8.0 pg cell−1) and PTX2 (1.5–11.1 pg cell−1) and (b) another with only PTX2 which included populations with different toxin cell quota (9.3–9.6 pg cell−1 and 5.8–9.2 pg cell−1). Toxin results suggest the likely presence of two morphotypes of the D. acuminata-complex in the north, and only one of them in the south. Likewise, shellfish toxin analyses revealed the presence of PTX2 in all samples (10.3–34.8 µg kg−1), but OA (7.7–15.2 µg kg−1) only in the northern samples. Toxin levels were below the regulatory limits established for diarrhetic shellfish poisoning (DSP) and PTXs (160 µg OA kg−1) in Perú, in all samples analyzed. This is the first report confirming the presence of OA and PTX in Dinophysis cells and in shellfish from Peruvian coastal waters.


2018 ◽  
pp. 175-212
Author(s):  
Yang Kuang ◽  
John D. Nagy ◽  
Steffen E. Eikenberry

Sign in / Sign up

Export Citation Format

Share Document