SEPARABLE GRAIN CONTENT OF MATURE WHOLE-PLANT CORN SILAGE

1983 ◽  
Vol 63 (4) ◽  
pp. 935-941 ◽  
Author(s):  
D. GANESH ◽  
D. N. MOWAT

This study investigated the effects of various factors on the amount of grain that might be separated from mature whole-plant corn silage. Materials were stored well-sealed in miniature silos. A high proportion of original grain (81–94%) was present as sizeable fragments or potentially separable grain in silage from two varieties, two harvest dates and two finenesses of chop. Evidence suggested that hybrid variety could influence the amount of grain actually separated by weight classification due to differences in stover moisture content at a constant grain moisture level and/or differences in type of kernel. During storage even in these miniature silos, some translocation or partial equilibration of soluble nitrogen as well as moisture occurred between grain and stover fractions. The finer chop tended to have a slightly lower percentage of whole uncracked kernels. Also, kernel damage was greater when one variety was cut at a relatively low moisture level. The optimum stage for ensiling whole-plant corn for later fractionation would appear to be 30–35% kernel moisture. These results are significant in developing a system of obtaining in one harvest operation stover of high feed quality and grain (for high-producing livestock or ethanol production).Key words: Separable grain, mature corn silage

1986 ◽  
Vol 66 (2) ◽  
pp. 451-461 ◽  
Author(s):  
V. S. BARON ◽  
K. R. STEVENSON ◽  
J. G. BUCHANAN-SMITH

Proteolysis of ensiled grain corn (Zea mays L.) was studied in both whole-kernel and ground forms at initial grain moisture levels ranging from 22 to 36%. Three trials simulated and examined the effects of anaerobic fermentation, aerobic pre-ensiling and aerobic postensiling environments on soluble nitrogen (SN) formation (Trials 1, 2 and 3, respectively). Sealed mason jars (1.2 L) with fermentation locks, polyethylene-lined metal pails (23 L) and polyethylene-lined metal pails with fermentation locks were used as storage containers in Trials 1, 2 and 3, respectively. Soluble nitrogen as a percent of total nitrogen (TN) increased substantially during anaerobic fermentation (0–90 d), but increased only slightly and not at all during aerobic storage pre-ensiling (0–5 d) and postensiling (0–8 d). As moisture level increased, rates and extent of fermentation and proteolysis increased in both whole and ground grain (Trial 1). Soluble nitrogen contents after 90 d of sealed storage were approximately double for ensiled corn above compared to below 30% moisture. Grinding increased the rate but not the extent of proteolysis at grain moisture levels above 30%; grinding had little effect on SN formation or fermentation parameters at lower moisture percentages. A fourth trial compared the effect of three low-rate organic acid treatments to ground and sealed corn and an unsealed 1.5% (wt/wt) acetic:propionic acid (20:80) treatment on whole kernels for proteolysis in grain corn at 28% moisture. Only a 0.2% (wt/wt) acetic:propionic:formic acid:formaldehyde (10:40:20:30) treatment partially inhibited proteolysis; it did not control mold growth. A 1.5% acetic propionic acid treatment inhibited fermentation, but produced SN contents similar to the ensiled control. Key words: Proteolysis, corn, simulated, storage methods, moisture level


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 900
Author(s):  
Chao Wang ◽  
Hongyan Han ◽  
Lin Sun ◽  
Na Na ◽  
Haiwen Xu ◽  
...  

Whole-plant corn silage is a predominant forage for livestock that is processed in Heilongjiang province (Daqing city and Longjiang county), Inner Mongolia Autonomous Region (Helin county and Tumet Left Banner) and Shanxi province (Taigu and Shanyin counties) of North China; it was sampled at 0, 5, 14, 45 and 90 days after ensiling. Bacterial community and fermentation quality were analysed. During fermentation, the pH was reduced to below 4.0, lactic acid increased to above 73 g/kg DM (p < 0.05) and Lactobacillus dominated the bacterial community and had a reducing abundance after 14 days. In the final silages, butyric acid was not detected, and the contents of acetic acid and ammonia nitrogen were below 35 g/kg DM and 100 g/kg total nitrogen, respectively. Compared with silages from Heilongjiang and Inner Mongolia, silages from Shanxi contained less Lactobacillus and more Leuconostoc (p < 0.05), and had a separating bacterial community from 14 to 90 days. Lactobacillus was negatively correlated with pH in all the silages (p < 0.05), and positively correlated with lactic and acetic acid in silages from Heilongjiang and Inner Mongolia (p < 0.05). The results show that the final silages had satisfactory fermentation quality. During the ensilage process, silages from Heilongjiang and Inner Mongolia had similar bacterial-succession patterns; the activity of Lactobacillus formed and maintained good fermentation quality in whole-plant corn silage.


2017 ◽  
Vol 33 (6) ◽  
pp. 708-715
Author(s):  
G.G.S. Salvati ◽  
L.F. Ferraretto ◽  
G.S. Dias Júnior ◽  
F.L. Drago ◽  
R.D. Shaver

2000 ◽  
Vol 86 (1-2) ◽  
pp. 83-94 ◽  
Author(s):  
M.A Bal ◽  
R.D Shaver ◽  
K.J Shinners ◽  
J.G Coors ◽  
J.G Lauer ◽  
...  
Keyword(s):  

2021 ◽  
Vol 26 (4) ◽  
pp. 2759-2764
Author(s):  
DRAGAN GLAMOČIĆ ◽  
MIROSLAVA POLOVINSKI HORVATOVIĆ ◽  
IGOR JAJIĆ ◽  
SAŠA KRSTOVIĆ ◽  
MIRKO IVKOVIĆ ◽  
...  

Nutrition of dairy cattle is based on two components, concentrates and forages. The main forages in Vojvodina, north province of Serbia is silage made from the whole plant of corn. After the outbreak of aflatoxin B1 in corn in 2012, the occurrence of aflatoxin B1 in corn as a source of contamination of aflatoxin M1 in milk was very broadly investigated. There is no data regarding the occurrence of aflatoxin B1 in silage and how much silage can contribute to the overall intake of aflatoxin B1 in this region. This work is an attempt to estimate how much silage, in condition and practice used in Vojvodina, contributes to the intake of aflatoxin B1, and consequently aflatoxin M1 in milk. In total, 82 samples of corn grain and 72 samples of corn silage were analyzed on the occurrence of aflatoxin B1 during 2017-2018 period. Aflatoxin B1 was found in 13.41% of corn samples in the range from 6.82 to 187.5 ppb (average 63.5 ppb). All positive samples were from 2017, while no positive samples were found during 2018. Incidence of aflatoxin B1 in silage was 54.17% in the range of 3.5-58.0 ppb (12% moisture content) or 0.95-16.1 ppb in the fresh matter. Results suggest that silage can be a significant factor to overall intake of aflatoxin B1 and that further research is needed.


2018 ◽  
Vol 96 (suppl_2) ◽  
pp. 92-93
Author(s):  
T A Damery ◽  
R T Pate ◽  
R Myers ◽  
P C Cardoso

1975 ◽  
Vol 55 (1) ◽  
pp. 77-84 ◽  
Author(s):  
T. B. DAYNARD ◽  
R. B. HUNTER

Identical experiments were conducted at the Elora Research Station, near Guelph, Ontario in 1970 and 1971 with the objective of determining the relationships among whole-plant dry matter (DM) yield, whole-plant moisture content, and grain moisture content of corn (Zea mays L.) during the later part of the growing season. Each experiment involved eight commercial hybrids representative of the range in maturity, endosperm type, lodging resistance, and grain yield potential of corn hybrids grown commercially in central Ontario. The hybrids were sampled at weekly intervals over an 8-wk period beginning approximately 1 September; the sampled plants were divided into their leaf, stalk, husk, ear and grain components and oven-dried. Fresh and dry weights were used to calculate dry matter (DM) yields and "at harvest" moisture contents of the various components, and of the entire plant. Averaged across the eight hybrids, maximum DM yield was attained at whole-plant moisture content of 66–70%, and a grain moisture content of 45–50%. Among hybrids, 66% whole-plant moisture corresponded to a range in grain moisture content from 41 to 47%. Two additional experiments were grown also at Elora in 1970 and 1971 to evaluate the effects of harvest date on the DM yield and in vitro digestibility of corn plants and their component plant parts. Each experiment involved four representative commercial hybrids which were sampled at four equal time intervals during the month of September, and divided into grain, cob, husks (including shank) and stover (including leaves, leaf sheaths, stalks and tassels) for dry weight and in vitro digestibility measurement. Whole-plant DM digestibility was essentially constant over a range of whole-plant moisture from 76 to 56% in 1970, and from 76 to 64% in 1971. The consistency of whole-plant digestibility was the result of compensating changes in component yield and digestibility. A decrease in the digestibility of the stover, husks and cob with delayed harvest was compensated for by an increase in the proportion of grain in the whole-plant yield.


2001 ◽  
Vol 47 (9) ◽  
pp. 829-841 ◽  
Author(s):  
Lisa A May ◽  
Brenda Smiley ◽  
Michael G Schmidt

Significant portions of grain produced for livestock consumption are converted into ensiled forage. Silage producers have long recognized the positive effects of using an inoculant to insure the proper transformation of forage into a palatable and digestible feedstuff. When silage is fed from a storage structure, exposure to air stimulates the growth of epiphytic aerobes that may result in the loss of up to 50% of the dry matter. Moreover, fungi have been found to be associated with ensiled forage, but their growth is normally suppressed by the anaerobic conditions. However, the introduction of oxygen results in a fungal bloom, and the fungi and the associated metabolites may result in lost productivity in the livestock consuming the contaminated forage. In this study, we report on the diversity of the fungal community associated with whole plant corn silage during the ensiling process, and the effect of two different bacterial inoculants as compared with the uninoculated natural epiphytic fermentation on the distribution of the fungi associated with the silage. The fungal community from duplicate mini-silo packages of the same treatment was analyzed by denaturing gradient gel electrophoresis and direct sequencing of the resulting operational taxonomic units. This method proved useful in analyzing the complex microbial communities associated with the forage in that it was possible to determine that one inoculant dramatically influenced the fungal community associated with whole plant corn silage.Key words: fungi, silage, DGGE, OTU.


Author(s):  
B.C. Agustinho ◽  
J.L.P. Daniel ◽  
L.M. Zeoula ◽  
C.R. Alcalde ◽  
E. Machado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document