ROOT PENETRATION AND SHOOT ELONGATION OF TALL WHEATGRASS AND BASIN WILDRYE IN RELATION TO SALINITY

1985 ◽  
Vol 65 (2) ◽  
pp. 335-343 ◽  
Author(s):  
BRUCE A. ROUNDY

Tall wheatgrass [Elytrigia pontica (Podp.) Holub Syn: Agropyron elongatum (Host) Beauv. ’Jose’] and basin wildrye [Leymus cinereus (Scribn. & Merr.) A. Love Syn: Elymus cinereus Scribn. and Merr. ’Magnar’] may have potential for increasing forage production once established on saline rangelands. The shoot and root elongation, osmotic adjustment, leaf water stress, and turgor at growth cessation of these grasses in response to drought and salinity were compared in a growth chamber experiment. Seedlings were grown in columns of soil initially saturated with solutions with an electrical conductivity of 1.0, 10, and 20 dS∙m−1 and allowed to grow until desiccated. The greater shoot elongation and root penetration of tall wheatgrass than basin wildrye at all soil salinities corresponds with the higher survival of tall wheatgrass than basin wildrye on a saline soil and on a nonsaline soil in central Nevada. As leaf water potential decreased, both species had similar or higher turgor maintenance in saline than nonsaline soil. But salinity decreased growth of both species, even when no water stress was apparent, and plant and soil water potentials in the saline and nonsaline columns were similar. This suggests that salt toxicity or nutritional imbalances due to accumulated ions, rather than water stress, depressed growth. Plant materials for revegetating saline, arid rangelands should be screened not only for seedling vigor and ability to tolerate or avoid water stress but also for tolerance to salinity.Key words: Drought, osmotic adjustment, turgor, ion toxicity, salt tolerance

1996 ◽  
Vol 23 (3) ◽  
pp. 245 ◽  
Author(s):  
Z Wang ◽  
B Quebedeaux ◽  
GW Stutte

Sorbitol plays an important role in osmotic adjustment in mature apple leaves under water stress. This study was conducted to determine whether water stress increases the conversion of glucose to sorbitol in mature apple leaves. A solution of [14C]glucose or [14C]sorbitol was introduced into the cut end of detached apple (Malus domestica Borkh. 'Red Jonathan') shoots which had previously experienced either water stress or no stress. The cut shoots were then placed in sterile deionised water to maintain well-watered conditions or in no water to continue water-stressed conditions. When shoots were labelled with [14C]glucose, 38% of [14C]glucose was recovered as glucose in the leaves at a leaf water potential (Ψw) of -1.0 MPa following a 30-min labelling. The remaining [14C]glucose was converted to sucrose (24%), fructose (21%), and sorbitol (17%). Water stress altered the partitioning of [14C]glucose between sorbitol and sucrose, increasing the ratio from 0.8 at Ψw = -1.0 to 1.7 at Ψw = -3.0 MPa. When shoots were supplied with [14C]sorbitol, <10% of [14C]sorbitol was converted to other soluble carbohydrates. Water stress inhibited the conversion of both [14C]glucose and [14C]sorbitol into starch. The results suggest that sorbitol accumulation may result from the preferential conversion of glucose to sorbitol rather than to sucrose and starch.


2009 ◽  
Vol 89 (5) ◽  
pp. 823-835 ◽  
Author(s):  
H W Cutforth ◽  
S V Angadi ◽  
B G McConkey ◽  
M H Entz ◽  
D Ulrich ◽  
...  

Understanding the drought physiology of alternate crops is essential to assess the production risks of new cropping systems. We compared the water relations of dry (field) pea (Pisum sativum L.), chickpea (Cicer arietinum L.), canola (Brassica napus L.) and mustard (Brassica juncea L.) with spring wheat (Triticum aestivum L.) under different moisture availabilities in field trials conducted in 1997 and 1998 at Swift Current, SK. Stress experience and stress responses varied with crop type. In general, there were similarities in drought physiology between the two pulse crops and between the two oilseed crops. The mean predawn leaf water potential of pea was frequently lowest, while the mean midday leaf water potential of wheat was at least -0.40 MPa lower than for any other crop. The crops exhibited different strategies to overcome water stress. Wheat had the lowest osmotic potential at full turgor, except under drought when turgor was lowest for chickpea and wheat; the highest values were observed in Brassica spp. Mean midday pressure potentials were lowest in wheat (and mostly negative, indicating loss of turgor) and highest for the pulse crops. Mean midday pressure potential for canola was positive when well-watered, otherwise it was near 0. Despite lowering osmotic potential, wheat could not maintain positive turgor much of the time at midday. Pulse crops, with the contributions from both osmotic adjustment and cell elasticity, maintained positive turgor over a wider range of water potentials compared with the other crops. With regard to both osmotic adjustment and tissue elasticity, we ranked the crops from high to low ability to adjust to moderate to severe water stress as pulses > wheat > Brassica oilseeds. Key words: Leaf water, osmotic, turgor potentials, wheat, pulse, canola, semiarid prairie


1983 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
JR Wilson ◽  
MM Ludlow

Buffel grass was subjected to a soil drying cycle for 5 weeks in a semi-arid environment. As water stress developed, the leaf water relations characteristics of these plants (Dry treatment) were compared with those of irrigated plants (Wet treatment). Leaf water potential (Ψ) of the Dry treatment measured at 1400 h decreased to a minimum of -6.9 MPa. The stressed leaves adjusted osmotically, with the osmotic potential at full turgor (Ψπ100) decreasing (becoming more negative) linearly with time (0.017 MPa day-1) and with decreasing water potential measured at 1400 h (0.11 MPa per 1 MPa decrease in Ψ). Maximum osmotic adjustment (Ψπ100 Wet -Ψπ100 Dry) was 0.66 MPa, and this change together with lower cell wall elasticity decreased by 1.03 MPa the water potential (Ψ0) at which the stressed leaves lost turgor. Differences between the stress- acclimated Dry leaves and the Wet leaves in bound water, turgid weight:dry weight ratio and the relative water content at which they reached zero turgor were small and inconsistent. At 18 days after rewatering, the Ψπ100 value of acclimated leaves was still 0.18 MPa lower than that of the control leaves. The substantial shift in Ψ0 gained the stress-acclimated leaves only one extra day before they lost turgor at 1400 h, and only 2.5 extra days before being permanently wilted. This small gain in time and the rapid cessation of leaf growth even before positive turgor was completely lost suggests that osmotic adjustment may not contribute greatly to continued leaf growth in water-stressed plants of buffel grass.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 655c-655
Author(s):  
Llngxiao Zhang

The effect of water stress on photosynthesis was investigated in strawberry plants to see responses of different aged-leaves within the same plant. Preliminary results indicated that, under severe stress (SS) conditions, young leaves had lower water potentials and higher photosynthetic CO2 assimilation rates than old leaves had, due to higher stomatal conductance in young leaves. This situation was not found in moderately stressed or well–watered plants, probably because of the higher non-stomatal limitation in old leaves under SS condition. Under SS condition, old leaves had a higher intracellular CO2 concentration. Osmotic adjustment or acclimation might occur during slow drying process, so that the young leaves could adjust their stomata and still remain open under low water potentials.


1985 ◽  
Vol 63 (4) ◽  
pp. 704-710 ◽  
Author(s):  
L. M. Dwyer ◽  
D. W. Stewart

Leaf water potential, osmotic potential, and leaf conductance were measured on corn (Zea mays L.) under water stress in the field and the greenhouse. Field-grown plants were subjected to several cycles of moderate water stress during vegetative growth, while greenhouse plants were well watered until just before the measurement period began following tasselling. In both the field and the greenhouse, leaf water potential declined at midday. Comparison of leaf water potential and osmotic potential measurements indicated that in both environments, the midday decline in leaf water potential was accompanied by a decline in osmotic potential. Since the decline in osmotic potential was greater than that accounted for by predicted volume changes resulting from normal daily dehydration, it was assumed to indicate osmotic adjustment. Despite these similarities, field-grown plants showed a greater response to water stress. Field plants underwent larger daily changes in leaf water potential and these were accompanied by larger changes in osmotic potential. As a result of this greater osmotic adjustment in the field, conductivity was higher at equivalent leaf water potentials and the critical leaf water potential was lower than in greenhouse-grown plants. In both environments, osmotic adjustment maintained leaf turgor (or pressure potential) in a narrow positive range. Although there was no direct relation between turgor potential and leaf conductivity, we hypothesize that the maintenance of a positive turgor potential during daylight hours is significant for growth since it may allow the moisture- and temperature-sensitive process of leaf expansion to proceed during the warmer daylight hours, even under moderate water stress.


1992 ◽  
Vol 43 (3) ◽  
pp. 659 ◽  
Author(s):  
L Guobin ◽  
DR Kemp ◽  
GB Liu

The effect of water stress during summer and recovery after rain on herbage accumulation, leaf growth components, stomatal conductance and leaf water relations of white clover (Trifolium repens cv. Haifa) and phalaris (Phalaris aquatica cv. Australian Commercial) was studied in an established mixed pasture under dryland (dry) or irrigated (wet) conditions. Soil water deficits under dry conditions reached 150 mm and soil water potentials in the top 20 cm declined to nearly -2 MPa after 50 days of dry weather. Water stress severely restricted growth of both species but then after rain fell, white clover growth rates exceeded those of phalaris. Under irrigation, white clover produced twice the herbage mass of phalaris but under dry conditions herbage production was similar from both species. Leaf appearance rates per tiller or stolon were slightly higher for white clover than phalaris but were reduced by 20% under water stress in both species. Leaf or petiole extension rates were more sensitive to water stress than leaf appearance rates and declined by 75% in phalaris and 90% in white clover. The ratio of leaf or petiole extension rates on dry/wet treatments was similar for both species in relation to leaf relative water contents, but in relation to leaf water potentials phalaris maintained higher leaf growth rates. Phalaris maintained a higher leaf relative water content in relation to leaf water potentials than did white clover and also maintained higher leaf water potentials in relation to the soil water potential in the top 20 cm. Stomata1 conductances for both species declined by 80-90% with increasing water stress, and both species showed similar stomatal responses to bulk leaf water potentials and leaf relative water contents. It is suggested that the poorer performance of white clover under water stress may be due principally to a shallower root system than phalaris and not due to any underlying major physiological differences. The white clover cultivar used in this study came from the mediterranean region and showed some different responses to water stress than previously published evidence on white clover. This suggests genetic variation in responses to water stress may exist within white clover. To maintain white clover in a pasture under dry conditions it is suggested that grazing practices aim to retain a high proportion of growing points.


2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


Sign in / Sign up

Export Citation Format

Share Document