HEIGHT CONTROL OF POT CHRYSANTHEMUMS WITH PRE- AND POST-PLANT TREATMENTS OF DAMINOZIDE AND UNICONAZOLE

1990 ◽  
Vol 70 (3) ◽  
pp. 925-930 ◽  
Author(s):  
PETER R. HICKLENTON

This study investigated the effects of growth retardants uniconazole [(E) - (p-chlorohenyl) -4, 4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol] and daminozide (butanedioic acid mono 2,2-dimethylhydrazide) on three chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars. Uniconazole applied as a soil drench (0.02 mg a.i. pot−1) or foliar spray (0.014 mg a.i. pot−1) 10 d after removal of the shoot tip reduced plant height at harvest in cultivars Deep Luv, Tip and Tara. Higher doses of uniconazole resulted in further plant height reduction in Tip and Tara but not in Deep Luv. Daminozide spray (14 mg a.i. pot) and uniconazole spray (0.028 or 0.056 mg a.i. pot−1) produced plants of similar height. Pre-plant dips of both growth retardants were less effective than sprays or drenches in controlling height. Flower area and flower dry weight were reduced with uniconazole drench and spray, and daminozide spray in each cultivar. Shoot dry weight was similarly affected in Tip and Tara but not in Deep Luv. Flowering was delayed in each cultivar by post-plant treatments of uniconazole drench and spray and by daminozide spray (0.08, 0.014 and 14 mg a.i. pot−1, respectively), and by daminozide and uniconazole pre-plant dips (5.0 mg L−1 and 4000 mg L−1, respectively).Key words: Sumagic, XE-1019, B-Nine, Alar, Chrysanthemum × morifolium, Dendanthema grandiflora

1992 ◽  
Vol 10 (4) ◽  
pp. 232-235
Author(s):  
David R. Brown ◽  
D. Joseph Eakes ◽  
Bridget K. Behe ◽  
Charles H. Gilliam

Abstract Moisture stress was compared to B-nine (daminozide) as a method of height control for annual bedding plant transplants. Three plant species, ‘Big Boy’ tomato, ‘California Wonder’ pepper and ‘Janie Gold’ marigold, were grown in 132 cm3 (8.05 in3) cell packs containing one of 2 commercial media, Fafard #3 or Pro-Mix BX. Treatments included moisture stress (MS), 2 concentrations of B-nine (2500 ppm applied twice and 5000 ppm once), and an untreated control. Method of height control and medium type had an interactive influence on height for each of the 3 species. Moisture stress tomato and marigold were shorter in the Fafard #3 medium compared to those in the Pro-Mix BX medium. Regardless of medium, MS tomato and marigold transplants were shorter or similar in size to the most effective B-nine treatment, 2500 ppm applied twice. Moisture stress and the B-nine treatments for pepper plants grown in the Fafard #3 medium reduced plant height similarly compared to the controls. However, when pepper plants were grown in the Pro-Mix BX medium, only B-nine treatments reduced plant height compared to the controls. Treatments producing short plants did not reduce node number, hence plants appeared fuller than treatments with tall plants. Shoot dry weights for MS tomato and marigold were less than those of plants receiving the other height control treatments, regardless of medium type. Plants of all 3 species grown in the Fafard #3 medium had less shoot dry weight than Pro-Mix BX plants across the 4 height control treatments.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 521B-521 ◽  
Author(s):  
Fahed A. Al-mana ◽  
David J. Beattie

A study of applying growth retardants under overhead and subsurface irrigation systems was conducted on bermudagrass (Cynodon dactylon L. cv. Tifway) grown from rhizomes in 15-cm pots containing sand medium. Paclobutrazol (50%) at 2 mg/pot was used as foliar spray or charged-hydrophilic polymers (Super Sorb C) and either incorporated or put below medium surface. Mefluidide (28%) at 0.01% ml/pot was used only as foliar spray. Before spray treatments, grasses were cut at 2 cm from medium surface, and the second cut was made at the 6th week from treatment. All growth retardant treatments reduced grass height compared to non-treated plants. The lowest grass height was produced by paclobutrazol as foliar spray under overhead irrigation in the 6th and 9th week. By the 9th week, all hormonal treatments under the two irrigation systems had no effect on grass quality, color, and establishment rate. Both paclobutrazol foliar spray and below medium surface charged-polymer treatments under subsurface irrigation had the lowest water loss and dry weight by the 6th and 9th week. The paclobutrazol charged-polymer treatment under subsurface irrigation had also the the lowest root dry weight among all treatments. Although mefluidide foliar spray was less effective on grass height than paclobutrazol, they had similar effect on water loss and shoot dry weight.


HortScience ◽  
1991 ◽  
Vol 26 (2) ◽  
pp. 150-152 ◽  
Author(s):  
Terri Woods Starman

One and two foliar spray and single-drench applications of uniconazole were applied to Eustoma grandiflorum (Raf.) Shinn (lisianthus) `Yodel Blue' to determine optimal concentrations for potted plant height control. A single uniconazole spray at 10.0 mg·liter-1 applied 2 weeks after pinching, two uniconazole applications at 5.0 mg·liter -1 applied 2 and 3 weeks after pinching, or a drench at 1.60 mg a.i. per pot applied 2 weeks after pinching gave equally good height control. At these concentrations, uniconazole was similar in its effect on plant height to daminozide foliar sprays at 7500 and 2500 mg·liter-l applied once and twice, respectively. Drenching with uniconazole at 1.60 mg a.i. per pot did not increase days to flower (DTF), whereas foliar spray applications did. Drenching did not reduce flower size, but increased flower number at time of harvest. Chemical names used: α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidinemethanol (ancymidol); butanedioic acid mono(2,2-dimethylhydrazide) (daminozide);(E)-(S)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-pent-1-ene-3-01 (uniconazole).


2000 ◽  
Vol 125 (6) ◽  
pp. 673-678 ◽  
Author(s):  
Anuradha Tatineni ◽  
Nihal C. Rajapakse ◽  
R. Thomas Fernandez ◽  
James R. Rieck

Responses to selected chemical growth retardants (daminozide, paclobutrazol, and prohexadione-Ca) and GA1 and GA3 under photoselective greenhouse covers with various phytochrome photoequilibrium estimates (φe) were evaluated using `Bright Golden Anne' chrysanthemum [Dendranthema ×grandiflora Kitam. (syn. Chrysanthemum morifolium Ramat.)] as the model plant to better understand the height control mechanism by far red (FR) light depleted environments. Plant height linearly decreased as φe increased from 0.72 to 0.83. The rate of height decrease of daminozide treated plants was less than that of water (control) or GA3-treated plants. The rate of height reduction was not different between control and GA3-treated plants among chambers with various φe. Both paclobutrazol and prohexadione-Ca reduced plant height regardless of φe, but the height reduction by paclobutrazol was more than that by prohexadioneCa. The combination of paclobutrazol and prohexadione-Ca reduced plant height more than either alone. GA1 reversed the height reduction caused by paclobutrazol and prohexadione-Ca regardless of φe, but the height increase by GA1 was more when it was applied with prohexadione-Ca than when applied alone. Results show that photoselective covers with high φe were effective in controlling height of chrysanthemums without chemical growth retardants. The linear relationship between plant height and φe suggests that effectiveness of photoselective covers increased as φe increased. The photosynthetic photon flux (PPF) transmission of photoselective covers decreased as the φe increased because of the increasing dye concentration. Identifying photoselective covers that effectively filter out FR light from sunlight and reduce plant height while minimizing the PPF reduction is critical for commercial success of photoselective covers. Gibberellins are, at least partially, involved in height control by photoselective covers. Photoselective greenhouse covers did not reduce responsiveness to gibberellins, and it appears that the mechanism may be to suppress gibberellin biosynthesis. Results also suggest that increased metabolism of GA1 to GA8 was not the mechanism of height control by photoselective covers. Chemical names used: butanedioic acid mono (2,2-dimethylhydrazide) [daminozide]; (±)-(R*,R*)-b-((4-chlorophenyl)methyl)-a-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol [paclobutrazol]; 3,5-dioxo-4-(1-oxopropyl)cyclohexanecarboxylic acid [prohexadione-Ca]; gibberellic acid [GA].


1991 ◽  
Vol 9 (4) ◽  
pp. 203-206
Author(s):  
Gary J. Keever ◽  
William J. Foster

Abstract Growth and flowering responses of Pelargonium × hortorum L. H. Bailey ‘Ringo Deep Scarlet’, Tagetes erecta L. ‘Inca Orange’, Viola × wittrockiana Gams. ‘Blue Shades’, Impatiens × ‘Zenith’ and Salvia farinacea Benth. ‘Victoria Blue’ to uniconazole applied at the seedling stage were evaluated at the end of production and 5 to 7 weeks after transplanting into the landscape (geranium, impatiens and salvia only). A drought stress evaluation was also conducted. Response to uniconazole varied with species, sampling date and uniconazole concentration. Growth of all species was suppressed when measured 4½ to 8½ weeks after treatment (WAT), and stress tolerance of all species except marigold increased with increasing concentrations of uniconazole. Flowering generally was delayed with uniconazole. Impatiens and geranium treated with 10 ppm or less of uniconazole were similar in height to nontreated plants 5 to 7 weeks after being transplanted; at this time, uniconazole had no effect on plant height or shoot dry weight of salvia. Daminozide applied once as a 5000 ppm foliar spray was not effective in suppressing vegetative growth of any of the tested species.


HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1888-1891 ◽  
Author(s):  
M. Kate Lee ◽  
Marc W. van Iersel

As a result of the decreasing availability of high-quality irrigation water, salinity tolerance of greenhouse crops is of increasing importance. Saline irrigation water can have many negative effects on plants, but also has the potential to act as a growth regulator because of its ability to reduce plant height. To determine the effects of NaCl in the irrigation water on the growth, physiology, and nutrient uptake of chrysanthemums (Chrysanthemum ×morifolium Ramat.), plants were watered with solutions with different NaCl concentrations (0, 1, 3, 6, or 9 g·L−1). Plants receiving 9 g·L−1 NaCl had a 76% reduction in shoot dry weight, a 90% reduction in stomatal conductance (g S), and a 4-day delay in flowering compared with control plants. Chrysanthemums receiving 1 g·L−1 NaCl had a 4-cm reduction in height with only a small reduction in shoot dry weight. Stomatal conductance and transpiration were reduced by more than 60% by NaCl concentrations of 1 g·L−1 as compared with control plants. The combination of a small reduction in dry weight and a large decrease in transpiration resulted in increased water use efficiency when plants received 1 g·L−1 NaCl. Concentrations of 3 g·L−1 NaCl or higher resulted in poor-quality plants either as a result of wilting of the leaves (3 g·L−1) or severely stunted plants (6 and 9 g·L−1). Our findings indicate that chrysanthemums can be grown successfully with 1 g·L−1 NaCl in the irrigation water without negative impacts on plant quality. This has important implications for the greenhouse industry as the availability of nonsaline water decreases. Saline water may be more readily available and can have the added benefit of reduced plant height, which is an important quality characteristic for floriculture crops.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 854C-854
Author(s):  
Ursula K. Schuch ◽  
Barbara Biernacka

Four azalea cultivars [Rhododendron × `White Lace' (WT), `Southern Charm' (SC), `Formosa' (F), and `George Tabor' (GT)] with different growth and flowering habits were treated with a foliar spray of uniconazole (U) at 0, 10, or 15 mg·liter–1 with or without a surfactant. GA was applied at 0 or 15 mg·liter–1 as a foliar spray to half of the plants on 23 Sept. 1993, 53 days after the uniconazole application. U reduced number, length, and dry weight of bypass shoots, and increased number of flower buds for all cultivars by Dec. 1993. Application of GA after U further increased the number of flower buds on SC and GT, which otherwise had few flowers. At the final evaluation in Mar. 1994, time to anthesis for cultivars F and GT was not affected by any treatment. Anthesis of SC and WL treated with 15 mg U and GA/liter started 6 days earlier than those treated with 15 mg U/liter. Number of flowers at anthesis and number of flower buds was increased two to four times on U-treated vs. nontreated plants. U decreased plant height, size, leaf area, and shoot dry weight of all cultivars. Shoot elongation of F and GT was further reduced with the 15 vs. 10 mg U/liter treatment. Application of GA increased the retarding effects of U on plant height for WL, SC, and GT, and on leaf area and shoot dry weight for WL.


HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 557-560 ◽  
Author(s):  
Joyce G. Latimer

Various spray rates of paclobutrazol, 5000 ppm daminozide, 200 ppm ancymidol, or drought imposition (visible wilt symptoms for up to 2 hours daily) were applied to three bedding plant species to determine effects on growth in the greenhouse and the subsequent growth and performance of treated plants in the landscape. Seedlings of Zinnia efegans Jacq. `Peter Pan Scarlet' responded to all growth retardants (paclobutrazol at 40 and 90 ppm) and the drought treatment in the greenhouse. However, zinnias treated with paclobutrazol or ancymidol still exhibited reductions in plant height 5 and 7 weeks after transplanting to the landscape, and in plant quality (subjective rating of plant appearance with emphasis on flower cover) at 5 weeks after transplanting. Daminozide or drought controlled zinnia growth in the greenhouse but had no carry-over effect in the landscape. Stem elongation of Impatiens wallerana Hook `Accent Red' seedlings was moderately controlled by 20 ppm paclobutrazol in the greenhouse. There were no other treatment effects in the greenhouse. Paclobutrazol (20 ppm) reduced final plant height and quality (7 weeks postplanting). Treatment with daminozide or drought reduced plant width and quality after 5 and 7 weeks in the landscape. Ancymidol had no effect on landscape performance of impatiens. Shoot dry weight gain and stem elongation of Tagetes erects L. `Papaya Crush' seedlings were reduced by ancymidol or 40 ppm paclobutrazol in the greenhouse. Shoot dry weight gain of marigold seedlings was inhibited during the first week of landscape establishment by prior treatment with daminozide, ancymidol, or drought. Final plant height and width in the landscape were not affected by any treatment; however, 40 ppm paclobutrazol, daminozide, or ancymidol decreased final plant quality. Chemical names used: α -cyclopropylα -(4-methoxyphenyl) -5-pyrimidinemethanol (ancymidol); butanedioic acid mono(2,2-dimethylhydrazide) (daminozide); β -[(4-chlorophenyl) methyl] - β - (1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 519d-519 ◽  
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Nicotiana alata Link and Otto. was transformed via Agrobacterium tumefaciens encoding a senescence-specific promoter SAG12 cloned from Arabidopsis thaliana fused to a Agrobacterium tumefaciens gene encoding isopentenyl transferase (IPT) that catalyzes cytokinin synthesis. This was considered an autoregulatory senescence-inhibitor system. In 1996, we reported delayed senescence of intact flowers by 2 to 6 d and delayed leaf senescence of transgenic vs. wild-type N. alata. Further evaluations in 1997 revealed several other interesting effects of the SAG12-IPT gene construct. Measurement of chlorophyll content of mature leaves showed higher levels of both chlorophyll a and b in transgenic material under normal fertilization and truncated fertilization regimes. At 4 to 5 months of age transgenic plants expressed differences in plant height, branching, and dry weight. Plant height was reduced by 3 to 13 cm; branch counts increased 2 to 3 fold; and shoot dry weight increased up to 11 g over wild-type N. alata. These observations indicate the system is not tightly autoregulated and may prove useful to the floriculture industry for producing compact and more floriferous plants.


2007 ◽  
Vol 87 (3) ◽  
pp. 581-585 ◽  
Author(s):  
Ahmet Korkmaz ◽  
Murat Uzunlu ◽  
Ali Riza Demirkiran

Salicylic acid (SA) is a common plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was, therefore, conducted to test whether acetyl salicylic acid (ASA) application at various concentrations through seed immersion or foliar spray would protect muskmelon [Cucumis melo L. (Reticulatus Group)] seedlings subjected to chilling stress. Twenty-one-day-old plants pre-treated with ASA (0, 0.1, 0.25, 0.50 or 1.0 mM) were subjected to chilling stress for 72 h at 3 ± 0.5°C. ASA, applied either through seed immersion or foliar spray, was effective within the range of 0.1 to 1 mM in inducing tolerance to chilling stress in muskmelon seedlings; however, there was no significant difference between application methods. ASA significantly and curvilinearly affected all seedling growth and stress indicator variables tested except shoot dry weight. The best protection was obtained from seedlings pre-treated with 0.5 mM ASA. The highest ASA concentration used was slightly less effective in providing chilling stress protection. Even though both methods provided similar means of protection, due to its simplicity and practicality, immersion of muskmelon seeds prior to sowing in 0.5 mM ASA would be a more desirable method to induce tolerance to chilling stress. Key words: Cucumis melo, aspirin, chilling stress tolerance, gas exchange, electrolyte leakage


Sign in / Sign up

Export Citation Format

Share Document