Growth of dormant buds on severed rhizomes of Calamagrostis canadensis

1991 ◽  
Vol 71 (4) ◽  
pp. 1093-1099 ◽  
Author(s):  
R. A. Powelson ◽  
V. J. Lieffers

The regeneration potential and dormancy of lateral buds on rhizome segments near the parent shoot base or the distal rhizome apex of Calamagrostis canadensis were assessed. Apical and basal segments of various length, with and without the parental shoot base or rhizome apex attached, were planted 1 cm deep in loam soil. When the apex or base was attached axillary buds on the rhizome usually remained dormant. When the parental shoot base was excised, the bud closest to the rhizome base was more likely to sprout than more distal buds. When the apex was excised from the apical segments, more axillary buds emerged but no priority of bud development arose. Buds near the apex position generally had a higher frequency of sprouting than buds adjacent to the parental base. Rhizome segments adjacent to the apex were heavier and had a higher nonstructural carbohydrate content than rhizome segments adjacent to the parental base. Key words: Calamagrostis canadensis, rhizome, dormancy, apical dominance, competition

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hu Chen ◽  
Jianhui Tan ◽  
Xingxing Liang ◽  
Shengsen Tang ◽  
Jie Jia ◽  
...  

AbstractKnot-free timber cultivation is an important goal of forest breeding, and lateral shoots affect yield and stem shape of tree. The purpose of this study was to analyze the molecular mechanism of lateral bud development by removing the apical dominance of Pinus massoniana young seedlings through transcriptome sequencing and identify key genes involved in lateral bud development. We analyzed hormone contents and transcriptome data for removal of apical dominant of lateral buds as well as apical and lateral buds of normal development ones. Data were analyzed using an comprehensive approach of pathway- and gene-set enrichment analysis, Mapman visualization tool, and gene expression analysis. Our results showed that the contents of auxin (IAA), Zea and strigolactone (SL) in lateral buds significantly increased after removal of apical dominance, while abscisic acid (ABA) decreased. Gibberellin (GA) metabolism, cytokinin (CK), jasmonic acid, zeatin pathway-related genes positively regulated lateral bud development, ABA metabolism-related genes basically negatively regulated lateral bud differentiation, auxin, ethylene, SLs were positive and negative regulation, while only A small number of genes of SA and BRASSINOSTEROID, such as TGA and TCH4, were involved in lateral bud development. In addition, it was speculated that transcription factors such as WRKY, TCP, MYB, HSP, AuxIAA, and AP2 played important roles in the development of lateral buds. In summary, our results provided a better understanding of lateral bud differentiation and lateral shoot formation of P. massoniana from transcriptome level. It provided a basis for molecular characteristics of side branch formation of other timber forests, and contributed to knot-free breeding of forest trees.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 544d-544
Author(s):  
James E. Faust ◽  
Royal D. Heins

Poor lateral branching sometimes occurs when certain poinsettia (Euphorbia pulcherrima) cultivars are pinched. Two experiments were conducted to determine the effect of high temperatures on axillary bud development. In Expt. 1, `Red Sails' plants were grown in a high-temperature environment (HTE) of 27°C at night (8 hr) and 30°C (3 hr), 33°C (10 hr), and 30°C (3 hr) in the day for two months, then transferred to a 20°C environment. In Expt. 2, plants grown at 20°C were transferred into the same HTE described above for 0, 2, 4, 8, 16, or 32 days and were then moved back into the 20°C environment. Axillary buds were examined for viability at the end of each experiment. In Expt. 1, only 8% of the lateral buds forming in the HTE were viable, while 80% of the buds forming in leaf axils of leaves unfolding after the plants were transferred to the 20°C environment were viable. In Expt. 2, 80% of buds produced in axils of the first four leaves to unfold after the start of the experiment were viable in all the treatments. However, the percentage of viable buds in the axils of leaf numbers 5 to 8 was 100, 100, 100, 96, 56, and 0 for the plants placed in the HTE for 0, 2, 4, 8, 16, and 32 days, respectively. These data indicate day temperatures of 30 to 33°C adversely affect lateral shoot development of `Red Sails' poinsettia.


Weed Science ◽  
1970 ◽  
Vol 18 (2) ◽  
pp. 218-222 ◽  
Author(s):  
C. A. Beasley

Apical dominance, as maintained by above-ground foliage or individual rhizome apexes, is very marked in johnsongrass. (Sorghum halepense[L.] Pers.). Axillary bud development in single-node segments excised from individual rhizome pieces was least at the proximal end with increasing activity toward the distal end (apex end). Within serially excised, multi-node sections, axillary bud development was least at the proximal end and greatest at the distal end, and there was an overall increase in bud activity from proximal to distal ends of the rhizome pieces. This was true irrespective of whether the multi-node sections were cultured vertically (with buds oriented above the nodes) or were inverted (with buds oriented below the nodes). Lateral rhizomes exerted a dominating influence on the development of axillary buds from their parent rhizomes, as did the apical meristems of the parent rhizomes.


1970 ◽  
Vol 17 (2) ◽  
pp. 193-207 ◽  
Author(s):  
Sang-Hoon Lee ◽  
Nagib Ahsan ◽  
Ki-Won Lee ◽  
Dong-Gi Lee ◽  
Iftekhar Alam ◽  
...  

A suitable callus induction and efficient regeneration protocol for orchardgrass (Dactylis golomerata L.) was developed. It consisted of 3 mg/l 2,4-D + 0.1 mg/l BA + 1 g/l CH + 300 mg/l L-proline + 40 mg/l L-cysteine + 30 g/l sucrose in MS showed the highest percentage of callus induction. Maltose exhibited better in regeneration than other types of carbon sources. Highest (71%) regeneration was obtained from N6 medium containing 1 mg/l 2,4-D + 3 mg/l BA + 1 g/l CH + 300 mg/l L-proline + 40 mg/l L-cysteine + 30 g/l maltose. Among the nine cultivars of orchardgrass (Dactylis golomerata L.), genotypic variation was observed in both callus induction and regeneration. Overall callus induction and regeneration rates were 23 - 73 and 17 - 71%, respectively.  Key words: Dactylis golomerata, Orchardgrass, Mature seeds, Additives, Regeneration, Maltose. D.O.I. 10.3329/ptcb.v17i2.3240 Plant Tissue Cult. & Biotech. 17(2): 193-207, 2007 (December)


1970 ◽  
Vol 19 (2) ◽  
pp. 263-288 ◽  
Author(s):  
A.K.M. N. Huda ◽  
, M.A. Bari ◽  
M. Rahman

 Key words: Auxillary buds, Eggplant, Encapsulation, Synthetic seed D.O.I. 10.3329/ptcb.v19i2.5445 Plant Tissue Cult. & Biotech. 19(2): 263-288, 2009 (December)       - Short communication


2021 ◽  
Vol 118 (11) ◽  
pp. e2004384118
Author(s):  
Xiaojian Xia ◽  
Han Dong ◽  
Yanling Yin ◽  
Xuewei Song ◽  
Xiaohua Gu ◽  
...  

The control of apical dominance involves auxin, strigolactones (SLs), cytokinins (CKs), and sugars, but the mechanistic controls of this regulatory network are not fully understood. Here, we show that brassinosteroid (BR) promotes bud outgrowth in tomato through the direct transcriptional regulation of BRANCHED1 (BRC1) by the BR signaling component BRASSINAZOLE-RESISTANT1 (BZR1). Attenuated responses to the removal of the apical bud, the inhibition of auxin, SLs or gibberellin synthesis, or treatment with CK and sucrose, were observed in bud outgrowth and the levels of BRC1 transcripts in the BR-deficient or bzr1 mutants. Furthermore, the accumulation of BR and the dephosphorylated form of BZR1 were increased by apical bud removal, inhibition of auxin, and SLs synthesis or treatment with CK and sucrose. These responses were decreased in the DELLA-deficient mutant. In addition, CK accumulation was inhibited by auxin and SLs, and decreased in the DELLA-deficient mutant, but it was increased in response to sucrose treatment. CK promoted BR synthesis in axillary buds through the action of the type-B response regulator, RR10. Our results demonstrate that BR signaling integrates multiple pathways that control shoot branching. Local BR signaling in axillary buds is therefore a potential target for shaping plant architecture.


1984 ◽  
Vol 14 (3) ◽  
pp. 447-451 ◽  
Author(s):  
C. H. A. Little

The entire crown of variously fertilized, unsheared Abiesbalsamea (L.) Mill. trees was sprayed once or twice weekly for 2, 4, or 8 weeks with an aqueous solution of 0 or 600 mg 6-benzylaminopurine (BAP) L−1 containing 1.5% dimethyl sulfoxide, 13.5% methanol, and 0.1% Tween 20, starting at different times during the period of shoot elongation. In the year of application, BAP inhibited the elongation of the current-year shoot, increased the number of lateral buds formed on this shoot, and induced lammas growth. Both BAP and the carrier solution caused some phytotoxicity in current-year needles. Responses to BAP treatment varied markedly with genotype, whorl position, and time of application, and decreased with mineral deficiency, and decreasing BAP dosage. After overwintering, many of the BAP-induced lateral buds elongated, resulting in an increased number of shoots, hence in a denser crown.


1982 ◽  
Vol 70 (3) ◽  
pp. 811-814 ◽  
Author(s):  
Marcia A. Harrison ◽  
Peter B. Kaufman

Sign in / Sign up

Export Citation Format

Share Document